Differential Geometry, Global Analysis, and Topology
Title | Differential Geometry, Global Analysis, and Topology PDF eBook |
Author | Canadian Mathematical Society. Summer Meeting |
Publisher | American Mathematical Soc. |
Pages | 198 |
Release | 1992 |
Genre | Mathematics |
ISBN | 9780821860175 |
This book contains the proceedings of a special session held during the Summer Meeting of the Canadian Mathematical Society in 1990. The articles collected here reflect the diverse interests of the participants but are united by the common theme of the interplay among geometry, global analysis, and topology. The topics covered include applications to low dimensional manifolds, control theory, integrable systems, Lie algebras of operators, and algebraic geometry and provide an insight into some recent trends in these areas.
Global Differential Geometry
Title | Global Differential Geometry PDF eBook |
Author | Christian Bär |
Publisher | Springer Science & Business Media |
Pages | 520 |
Release | 2011-12-18 |
Genre | Mathematics |
ISBN | 3642228429 |
This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
Differential Geometry
Title | Differential Geometry PDF eBook |
Author | Loring W. Tu |
Publisher | Springer |
Pages | 358 |
Release | 2017-06-01 |
Genre | Mathematics |
ISBN | 3319550845 |
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Global Riemannian Geometry: Curvature and Topology
Title | Global Riemannian Geometry: Curvature and Topology PDF eBook |
Author | Steen Markvorsen |
Publisher | Birkhäuser |
Pages | 96 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034880553 |
This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.
Global Analysis
Title | Global Analysis PDF eBook |
Author | Ilka Agricola |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821829513 |
The final third of the book applies the mathematical ideas to important areas of physics: Hamiltonian mechanics, statistical mechanics, and electrodynamics." "There are many classroom-tested exercises and examples with excellent figures throughout. The book is ideal as a text for a first course in differential geometry, suitable for advanced undergraduates or graduate students in mathematics or physics."--BOOK JACKET.
Differential Topology
Title | Differential Topology PDF eBook |
Author | Victor Guillemin |
Publisher | American Mathematical Soc. |
Pages | 242 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0821851934 |
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.
From Differential Geometry to Non-commutative Geometry and Topology
Title | From Differential Geometry to Non-commutative Geometry and Topology PDF eBook |
Author | Neculai S. Teleman |
Publisher | Springer Nature |
Pages | 406 |
Release | 2019-11-10 |
Genre | Mathematics |
ISBN | 3030284336 |
This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.