Differential Geometry Applied To Dynamical Systems (With Cd-rom)

Differential Geometry Applied To Dynamical Systems (With Cd-rom)
Title Differential Geometry Applied To Dynamical Systems (With Cd-rom) PDF eBook
Author Jean-marc Ginoux
Publisher World Scientific
Pages 341
Release 2009-04-03
Genre Mathematics
ISBN 9814467634

Download Differential Geometry Applied To Dynamical Systems (With Cd-rom) Book in PDF, Epub and Kindle

This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.

Modeling by Nonlinear Differential Equations

Modeling by Nonlinear Differential Equations
Title Modeling by Nonlinear Differential Equations PDF eBook
Author Paul E. Phillipson
Publisher World Scientific
Pages 238
Release 2009
Genre Mathematics
ISBN 9814271594

Download Modeling by Nonlinear Differential Equations Book in PDF, Epub and Kindle

"This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions."--back cover.

Fractional Order Systems: Modeling And Control Applications

Fractional Order Systems: Modeling And Control Applications
Title Fractional Order Systems: Modeling And Control Applications PDF eBook
Author Riccardo Caponetto
Publisher World Scientific
Pages 201
Release 2010-02-10
Genre Technology & Engineering
ISBN 9814465151

Download Fractional Order Systems: Modeling And Control Applications Book in PDF, Epub and Kindle

This book aims to propose the implementation and application of Fractional Order Systems (FOS). It is well known that FOS can be utilized in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductory chapters are included on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material will have applications in robotics, aerospace and biomedicine.

Discrete Systems with Memory

Discrete Systems with Memory
Title Discrete Systems with Memory PDF eBook
Author Ramon Alonso-Sanz
Publisher World Scientific
Pages 478
Release 2011
Genre Science
ISBN 9814343633

Download Discrete Systems with Memory Book in PDF, Epub and Kindle

Memory is a universal function of organized matter. What is the mathematics of memory? How does memory affect the space-time behaviour of spatially extended systems? Does memory increase complexity? This book provides answers to these questions. It focuses on the study of spatially extended systems, i.e., cellular automata and other related discrete complex systems. Thus, arrays of locally connected finite state machines, or cells, update their states simultaneously, in discrete time, by the same transition rule. The classical dynamics in these systems is Markovian: only the actual configuration is taken into account to generate the next one. Generalizing the conventional view on spatially extended discrete dynamical systems evolution by allowing cells (or nodes) to be featured by some trait state computed as a function of its own previous state-values, the transition maps of the classical systems are kept unaltered, so that the effect of memory can be easily traced. The book demonstrates that discrete dynamical systems with memory are not only priceless tools for modeling natural phenomena but unique mathematical and aesthetic objects.

2-D Quadratic Maps and 3-D ODE Systems

2-D Quadratic Maps and 3-D ODE Systems
Title 2-D Quadratic Maps and 3-D ODE Systems PDF eBook
Author Elhadj Zeraoulia
Publisher World Scientific
Pages 357
Release 2010
Genre Science
ISBN 9814307742

Download 2-D Quadratic Maps and 3-D ODE Systems Book in PDF, Epub and Kindle

This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the Hnon map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in the field of general 2-D quadratic maps, especially their classification into equivalence classes, and finding regions for chaos, hyperchaos, and non-chaos in the space of bifurcation parameters. Following the main introduction to the rigorous tools used to prove chaos and bifurcations in the two representative systems, is the study of the invertible case of the 2-D quadratic map, where previous works are oriented toward Hnon mapping. 2-D quadratic maps are then classified into 30 maps with well-known formulas. Two proofs on the regions for chaos, hyperchaos, and non-chaos in the space of the bifurcation parameters are presented using a technique based on the second-derivative test and bounds for Lyapunov exponents. Also included is the proof of chaos in the piecewise linear Chua's system using two methods, the first of which is based on the construction of Poincar map, and the second is based on a computer-assisted proof. Finally, a rigorous analysis is provided on the bifurcational phenomena in the piecewise linear Chua's system using both an analytical 2-D mapping and a 1-D approximated Poincar mapping in addition to other analytical methods.

A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science

A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science
Title A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science PDF eBook
Author Leon O. Chua
Publisher World Scientific
Pages 405
Release 2011-03-30
Genre Science
ISBN 9814317306

Download A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Book in PDF, Epub and Kindle

Annotation This text introduces cellular automata from a rigorous nonlinear dynamics perspective. It supplies the missing link between nonlinear differential and difference equations to discrete symbolic analysis. It provides an analysis, and classification of the empirical results presented in Wolfram's 'New Kind of Science'.

Bifurcations in Piecewise-smooth Continuous Systems

Bifurcations in Piecewise-smooth Continuous Systems
Title Bifurcations in Piecewise-smooth Continuous Systems PDF eBook
Author David John Warwick Simpson
Publisher World Scientific
Pages 255
Release 2010
Genre Mathematics
ISBN 9814293857

Download Bifurcations in Piecewise-smooth Continuous Systems Book in PDF, Epub and Kindle

1. Fundamentals of piecewise-smooth, continuous systems. 1.1. Applications. 1.2. A framework for local behavior. 1.3. Existence of equilibria and fixed points. 1.4. The observer canonical form. 1.5. Discontinuous bifurcations. 1.6. Border-collision bifurcations. 1.7. Poincaré maps and discontinuity maps. 1.8. Period adding. 1.9. Smooth approximations -- 2. Discontinuous bifurcations in planar systems. 2.1. Periodic orbits. 2.2. The focus-focus case in detail. 2.3. Summary and classification -- 3. Codimension-two, discontinuous bifurcations. 3.1. A nonsmooth, saddle-node bifurcation. 3.2. A nonsmooth, Hopf bifurcation. 3.3. A codimension-two, discontinuous Hopf bifurcation -- 4. The growth of Saccharomyces cerevisiae. 4.1. Mathematical model. 4.2. Basic mathematical observations. 4.3. Bifurcation structure. 4.4. Simple and complicated stable oscillations -- 5. Codimension-two, border-collision bifurcations. 5.1. A nonsmooth, saddle-node bifurcation. 5.2. A nonsmooth, period-doubling bifurcation -- 6. Periodic solutions and resonance tongues. 6.1. Symbolic dynamics. 6.2. Describing and locating periodic solutions. 6.3. Resonance tongue boundaries. 6.4. Rotational symbol sequences. 6.5. Cardinality of symbol sequences. 6.6. Shrinking points. 6.7. Unfolding shrinking points -- 7. Neimark-Sacker-like bifurcations. 7.1. A two-dimensional map. 7.2. Basic dynamics. 7.3. Limiting parameter values. 7.4. Resonance tongues. 7.5. Complex phenomena relating to resonance tongues. 7.6. More complex phenomena