Differential Geometry, Differential Equations, and Mathematical Physics
Title | Differential Geometry, Differential Equations, and Mathematical Physics PDF eBook |
Author | Maria Ulan |
Publisher | Springer Nature |
Pages | 231 |
Release | 2021-02-12 |
Genre | Mathematics |
ISBN | 3030632539 |
This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.
Lectures on Differential Equations and Differential Geometry
Title | Lectures on Differential Equations and Differential Geometry PDF eBook |
Author | |
Publisher | |
Pages | |
Release | |
Genre | |
ISBN | 9787040503029 |
Differential Geometry and Its Applications
Title | Differential Geometry and Its Applications PDF eBook |
Author | John Oprea |
Publisher | MAA |
Pages | 508 |
Release | 2007-09-06 |
Genre | Mathematics |
ISBN | 9780883857489 |
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.
Fundamentals of Differential Geometry
Title | Fundamentals of Differential Geometry PDF eBook |
Author | Serge Lang |
Publisher | Springer Science & Business Media |
Pages | 553 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461205417 |
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER
Differential Geometry
Title | Differential Geometry PDF eBook |
Author | Erwin Kreyszig |
Publisher | Courier Corporation |
Pages | 384 |
Release | 2013-04-26 |
Genre | Mathematics |
ISBN | 0486318621 |
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
Differential Geometry
Title | Differential Geometry PDF eBook |
Author | Loring W. Tu |
Publisher | Springer |
Pages | 358 |
Release | 2017-06-01 |
Genre | Mathematics |
ISBN | 3319550845 |
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Elementary Differential Geometry
Title | Elementary Differential Geometry PDF eBook |
Author | A.N. Pressley |
Publisher | Springer Science & Business Media |
Pages | 469 |
Release | 2010-03-10 |
Genre | Mathematics |
ISBN | 1848828918 |
Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul