Development of Fission Gas Swelling and Release Models for Metallic Nuclear Fuels

Development of Fission Gas Swelling and Release Models for Metallic Nuclear Fuels
Title Development of Fission Gas Swelling and Release Models for Metallic Nuclear Fuels PDF eBook
Author Nathan Christopher Andrews
Publisher
Pages 149
Release 2012
Genre
ISBN

Download Development of Fission Gas Swelling and Release Models for Metallic Nuclear Fuels Book in PDF, Epub and Kindle

Fuel swelling and fission gas generation for fast reactor fuels are of high importance since they are among the main limiting factors in the development of metallic fast reactor fuel. Five new fission gas and swelling modules for the fast reactor metallic fuel code FEAST-METAL were developed. This increases the number of degrees of freedom in the code and enhances the science -based modeling options for fuel swelling. All of the modules developed were benchmarked against data from EBRII. Particularly, the code was benchmarked against U-19Pu-lOZr fuel and was applied to U-6Zr fuel. The modifications made still kept the overall GRSIS algorithm present in the code. The GRSIS model tracks "closed" and "open" bubbles. The new modifications increased the number of closed bubble groups used in the algorithm, inserted a model that changed the bubble groups from being based on constant volumes to ones with constant numbers of atoms, added phase dependence and reexamined closed bubble spacing through the implementation of a Monte-Carlo algorithm to calculate the effective distance between the nearest bubbles. All model options added to the code predicted the swelling, fission gas release and cladding strain effectively for the benchmark cases. However, significant differences in the results were fotind when the codes were applied to long-term U-6Zr fuel. The differences in the results cannot be resolved without more data on fuel behavior under irradiation; particularly, breeder fuel (blanket) data is needed to develop effective benchmarks. Until more data becomes available, it is advisable to use the original two group constant volume version of the code and the phase dependent version of the code and compare the results. The latter offers a much more scientifically based version of the code. Sensitivity analysis to the number of bubble groups indicate limited benefit may be obtained by using more than 2 bubble sizes. Additionally, care should be taken to ensure that the axial nodding of the fuel be such that the axial mesh length is smaller than 10% of the fuel length. Furthermore, if the FEAST code is to be used in a coupled fashion with the coolant sub-channel analysis code COBRA, the accuracy of the results depend on the model used for fuel swelling.

Nuclear Fuel Elements

Nuclear Fuel Elements
Title Nuclear Fuel Elements PDF eBook
Author Brian R. T. Frost
Publisher Elsevier
Pages 284
Release 2013-10-22
Genre Technology & Engineering
ISBN 1483155250

Download Nuclear Fuel Elements Book in PDF, Epub and Kindle

Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overview of nuclear reactors and fuel elements, as well as fuel element design and development based on the reactor operator's approach, materials scientist's approach, and interdisciplinary approach. The reader is then introduced to different types of nuclear fuels and their irradiation behavior, considerations for using cladding and duct materials in fuel element design and development, and fuel element design and modeling. The chapters that follow focus on the testing of fuel element performance, experimental techniques and equipment for testing fuel element designs, and the performance of fuels for water reactors. Fuel elements for gas-cooled reactors, fast reactors, and research and test reactors are also described. The book concludes with an assessment of unconventional fuel elements. This book will be useful to fuel element technologists as well as materials scientists and engineers.

A Model for Fission-gas Release from Porous Fuels in Low-permeability Containers

A Model for Fission-gas Release from Porous Fuels in Low-permeability Containers
Title A Model for Fission-gas Release from Porous Fuels in Low-permeability Containers PDF eBook
Author John W. Prados
Publisher
Pages 22
Release 1961
Genre Fission gases
ISBN

Download A Model for Fission-gas Release from Porous Fuels in Low-permeability Containers Book in PDF, Epub and Kindle

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials
Title Comprehensive Nuclear Materials PDF eBook
Author Todd R Allen
Publisher Elsevier
Pages 3552
Release 2011-05-12
Genre Technology & Engineering
ISBN 0080560334

Download Comprehensive Nuclear Materials Book in PDF, Epub and Kindle

Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants

Fuel Performance Experiments and Modeling

Fuel Performance Experiments and Modeling
Title Fuel Performance Experiments and Modeling PDF eBook
Author
Publisher
Pages 305
Release 2014
Genre
ISBN

Download Fuel Performance Experiments and Modeling Book in PDF, Epub and Kindle

Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

Gaseous Swelling and Release in Nuclear Fuels During Grain Growth

Gaseous Swelling and Release in Nuclear Fuels During Grain Growth
Title Gaseous Swelling and Release in Nuclear Fuels During Grain Growth PDF eBook
Author Hubert C. Gibson
Publisher
Pages
Release 2013
Genre Fission gases
ISBN

Download Gaseous Swelling and Release in Nuclear Fuels During Grain Growth Book in PDF, Epub and Kindle

A model of the generation and release of fission gas, as well as the total swelling over time, was created. It uses an ideal spherical fuel grain with a time-dependent radius. UO2 and quasi-homogeneous SBR MOX fuels were simulated with this model, and the results were compared to a fixed grain radius model of gaseous swelling. Gaseous swelling and fission gas release were calculated for temperatures from 1600 K to 2200 K. The grain growth of UO2 was found to decrease the time needed to saturate the intergranular boundaries as compared to simple diffusion without grain growth. Small temperatures increased the time required for saturation, as did small rates of grain growth. Gaseous swelling was within the range of values found by experimental data.

Nuclear Materials for Fission Reactors

Nuclear Materials for Fission Reactors
Title Nuclear Materials for Fission Reactors PDF eBook
Author H. Matzke
Publisher Elsevier
Pages 359
Release 2012-12-02
Genre Technology & Engineering
ISBN 0444596836

Download Nuclear Materials for Fission Reactors Book in PDF, Epub and Kindle

This volume brings together 47 papers from scientists involved in the fabrication of new nuclear fuels, in basic research of nuclear materials, their application and technology as well as in computer codes and modelling of fuel behaviour. The main emphasis is on progress in the development of non-oxide fuels besides reporting advances in the more conventional oxide fuels. The two currently performed large reactor safety programmes CORA and PHEBUS-FP are described in invited lectures. The contributions review basic property measurements, as well as the present state of fuel performance modelling. The performance of today's nuclear fuel, hence UO2, at high burnup is also reviewed with particular emphasis on the recently observed phenomenon of grain subdivision in the cold part of the oxide fuel at high burnup, the so-called "rim" effect. Similar phenomena can be simulated by ion implantation in order to better elucidate the underlying mechanism and reviews on high resolution electron microscopy provide further information. The papers will provide a useful treatise of views, ideas and new results for all those scientists and engineers involved in the specific questions of current nuclear waste management.