Bone Tissue Engineering
Title | Bone Tissue Engineering PDF eBook |
Author | Jeffrey O. Hollinger |
Publisher | CRC Press |
Pages | 462 |
Release | 2004-10-14 |
Genre | Medical |
ISBN | 1135501912 |
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Active Implants and Scaffolds for Tissue Regeneration
Title | Active Implants and Scaffolds for Tissue Regeneration PDF eBook |
Author | Meital Zilberman |
Publisher | Springer Science & Business Media |
Pages | 511 |
Release | 2011-05-05 |
Genre | Technology & Engineering |
ISBN | 3642180655 |
Active implants are actually drug or protein-eluting implants that induce healing effects, in addition to their regular task, such as support. This effect is achieved by controlled release of the active agent to the surrounding tissue. This book will give a broad overview of biomaterial platforms used as basic elements of drug-eluting implants. It will include mainly coatings for vascular stents with controlled release of antiproliferative agents, wound dressings with controlled release of antibacterial agents, drug-eluting vascular grafts, protein-eluting scaffolds for tissue regeneration, drug-eluting platforms for dental and other applications. Thus, both internal and external implants are described. The drug-eluting implants will be described in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, as well as implant functioning. Smart polymeric systems, such as crosslinked poly-lactones, thermo and pH-sensitive hydrogels and poly(amido-amines), as well as novel basic structural elements, such as composite fibers and films, and nanostructures will be thoroughly described. The effect of the processing parameters on the microstructure and on the resulting drug release profiles, mechanical and physical properties, and other relevant properties, will be emphasized. The described new biomaterials approaches for active implants enhance the tools available for creating clinically important biomedical applications.
Advanced Techniques in Bone Regeneration
Title | Advanced Techniques in Bone Regeneration PDF eBook |
Author | Alessandro Rozim Zorzi |
Publisher | BoD – Books on Demand |
Pages | 388 |
Release | 2016-08-31 |
Genre | Medical |
ISBN | 9535125389 |
Advanced Techniques in Bone Regeneration is a book that brings together over 15 chapters, written by leading practitioners and researchers, of the latest advances in the area, including surgical techniques, new discoveries, and promising methods involving biomaterials and tissue engineering. This book is intended for all who work in the treatment of disorders involving problems with the regeneration of bone tissue, are doctors or dentists, as well as are researchers and teachers involved in this exciting field of scientific knowledge.
Zinc and Its Alloys
Title | Zinc and Its Alloys PDF eBook |
Author | United States. National Bureau of Standards |
Publisher | |
Pages | 246 |
Release | 1931 |
Genre | Zinc |
ISBN |
Biomaterials for Artificial Organs
Title | Biomaterials for Artificial Organs PDF eBook |
Author | Michael Lysaght |
Publisher | Elsevier |
Pages | 313 |
Release | 2010-12-20 |
Genre | Technology & Engineering |
ISBN | 0857090844 |
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored
Bone Repair Biomaterials
Title | Bone Repair Biomaterials PDF eBook |
Author | Kendell Pawelec |
Publisher | Woodhead Publishing |
Pages | 506 |
Release | 2018-11-29 |
Genre | Technology & Engineering |
ISBN | 0081024525 |
Bone Repair Biomaterials: Regeneration and Clinical Applications, Second Edition, provides comprehensive reviews on materials science, engineering principles and recent advances. Sections review the fundamentals of bone repair and regeneration, discuss the science and properties of biomaterials used for bone repair, including metals, ceramics, polymers and composites, and discuss clinical applications and considerations, with chapters on such topics as orthopedic surgery, tissue engineering, implant retrieval, and ethics of bone repair biomaterials. This second edition includes more chapters on relevant biomaterials and a greatly expanded section on clinical applications, including bone repair applications in dental surgery, spinal surgery, and maxilo-facial and skull surgery. In addition, the book features coverage of long-term performance and failure of orthopedic devices. It will be an invaluable resource for researchers, scientists and clinicians concerned with the repair and restoration of bone. - Provides a comprehensive review of the materials science, engineering principles and recent advances in this important area - Presents new chapters on Surface coating of titanium, using bone repair materials in dental, spinal and maxilo-facial and skull surgery, and advanced manufacturing/3D printing - Reviews the fundamentals of bone repair and regeneration, addressing social, economic and clinical challenges - Examines the properties of biomaterials used for bone repair, with specific chapters assessing metals, ceramics, polymers and composites
Degradation of Implant Materials
Title | Degradation of Implant Materials PDF eBook |
Author | Noam Eliaz |
Publisher | Springer Science & Business Media |
Pages | 521 |
Release | 2012-08-21 |
Genre | Technology & Engineering |
ISBN | 1461439426 |
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.