Developing a Non-destructive Evaluation Technique Using Resonance Ultrasound Spectroscopy for Fission Based Target

Developing a Non-destructive Evaluation Technique Using Resonance Ultrasound Spectroscopy for Fission Based Target
Title Developing a Non-destructive Evaluation Technique Using Resonance Ultrasound Spectroscopy for Fission Based Target PDF eBook
Author Abu Rafi Mohammad Iasir
Publisher
Pages 71
Release 2015
Genre
ISBN

Download Developing a Non-destructive Evaluation Technique Using Resonance Ultrasound Spectroscopy for Fission Based Target Book in PDF, Epub and Kindle

The purpose of this thesis is to study Resonance Ultrasound Spectroscopy(RUS) and it's potential to evaluate the change in interfacial thermal resistance due to irradiation. Resonant Ultrasound Spectroscopy is conventionally used to determine the material properties of elastic bodies. It is a nondestructive technique that is very capable of extracting the elastic constants for a complete anisotropic material. Finite Element Method(FEM) is used to determine the natural frequency of a hollow cylinder. FEM was used due to the shape of the object. An experimental system was developed to capture the resonant frequencies of a hollow cylinder which is similar to Molybdenum-99 target. After successfully determining the resonance frequencies from the spectra, the frequencies were inverted to the elastic constants using the finite element model. Radiation effects on elastic constants was also studied. An investigation was made to assess the usefulness of RUS in evaluating radiation damage of materials. An experimental study was also completed to analyze the differences in RUS spectra in a contact pressure analysis between two cylinders of Molybdenum-99 target.

Analysis of Resonant Ultrasound Spectroscopy as a Technique to Evaluate Material Property Changes

Analysis of Resonant Ultrasound Spectroscopy as a Technique to Evaluate Material Property Changes
Title Analysis of Resonant Ultrasound Spectroscopy as a Technique to Evaluate Material Property Changes PDF eBook
Author Gautham Manoharan
Publisher
Pages 67
Release 2017
Genre
ISBN

Download Analysis of Resonant Ultrasound Spectroscopy as a Technique to Evaluate Material Property Changes Book in PDF, Epub and Kindle

The objective of this thesis is to validate Resonant Ultrasound Spectroscopy (RUS) as a non-destructive evaluation tool that can be used to study effects of radiation on the mechanical properties of a material, mainly its elastic constants. RUS involves experimentally measuring the resonant frequencies of a sample and calculating the elastic constants based on these measurements. Finite Element Method (FEM) is used to get the frequencies of the modes of free vibration for the sample model. This result depends on the elastic constant values used in the FEM simulation. Studies were conducted to confirm the accuracy of the FEM model, and determine the right configuration and parameters to use for the simulation. Assuming uniform and isotropic elastic property changes, the effects of radiation damage can be quantified by obtaining a set of matching resonant frequencies between the experimental and FEM simulation results, before and after irradiating the sample. This is done by adjusting the elastic constant values used in the simulation so that the results match with the experimentally obtained resonant frequencies. With powerful enough equipment, even real time monitoring is possible in harsh environments, thus pointing out imminent failure.

Resonant Ultrasound Spectroscopy and Non-destructive Testing

Resonant Ultrasound Spectroscopy and Non-destructive Testing
Title Resonant Ultrasound Spectroscopy and Non-destructive Testing PDF eBook
Author
Publisher
Pages 4
Release 1995
Genre
ISBN

Download Resonant Ultrasound Spectroscopy and Non-destructive Testing Book in PDF, Epub and Kindle

The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating {open_quotes}the problem has, for the most part, resisted attack{close_quotes}. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

Resonant Ultrasound Spectroscopy for Materials Studies and Non-destructive Testing

Resonant Ultrasound Spectroscopy for Materials Studies and Non-destructive Testing
Title Resonant Ultrasound Spectroscopy for Materials Studies and Non-destructive Testing PDF eBook
Author
Publisher
Pages 5
Release 1995
Genre
ISBN

Download Resonant Ultrasound Spectroscopy for Materials Studies and Non-destructive Testing Book in PDF, Epub and Kindle

Optical Resonant Ultrasound Spectroscopy for Spherical Target Characterization

Optical Resonant Ultrasound Spectroscopy for Spherical Target Characterization
Title Optical Resonant Ultrasound Spectroscopy for Spherical Target Characterization PDF eBook
Author
Publisher
Pages
Release 2010
Genre
ISBN

Download Optical Resonant Ultrasound Spectroscopy for Spherical Target Characterization Book in PDF, Epub and Kindle

A new non-contact resonant ultrasound spectroscopic technique is employed to determine the response characteristics of spherical fusion targets, with particular emphasis on both the displacement sensitivity and frequency response of the technique. The optical experimental method is based on photorefractive optical lock-in detection scheme with narrow bandwidth amplification to measure phase variations in light scattered from optically rough, continuously vibrating surfaces with very high, linear sensitivity and a noise level on the order of 10.6 nanometers RMS. This high sensitivity is needed to determine the vibrational modes of the gas inside an spherical target separately from the elastic modes of the containment shell. These measurements can be used to calculate the pressure and density of the internal gas. This approach is also used to discriminate between nearly-degenerate resonant modes characteristic of the frequency spectrum when the target fabrication is inadequate (non-uniform shell thickness, misalignment of hemispheres) or when the Deuteriumrrritium solid fuel inside the target is not symmetrically distributed at cryogenic temperatures. Asymmetries in the fuel layering and geometric perturbations disturb the target implosion process creating deleterious effects in fusion energy generation. The technique is applied to determine the modal characteristics of a target sphere with known response from 100 KHz to 450 KHz. The results demonstrate the unique capabilities of the optical lock-in detection method to measure very small resonant ultrasonic signals.

Ultrasonic Spectral Analysis for Nondestructive Evaluation

Ultrasonic Spectral Analysis for Nondestructive Evaluation
Title Ultrasonic Spectral Analysis for Nondestructive Evaluation PDF eBook
Author
Publisher
Pages
Release 1981
Genre
ISBN 9781461331261

Download Ultrasonic Spectral Analysis for Nondestructive Evaluation Book in PDF, Epub and Kindle

Energy Research Abstracts

Energy Research Abstracts
Title Energy Research Abstracts PDF eBook
Author
Publisher
Pages 316
Release 1982
Genre Power resources
ISBN

Download Energy Research Abstracts Book in PDF, Epub and Kindle