Design of Modern Turbine Combustors
Title | Design of Modern Turbine Combustors PDF eBook |
Author | A. M. Mellor |
Publisher | |
Pages | 578 |
Release | 1990 |
Genre | Technology & Engineering |
ISBN |
Lower pollutant emissions and broader multifuel flexibility are driving forces for advancing aircraft, vehicular, and industrial engine performance and versatility. Both are inherently connected with the design of the fuel injector and combustor system. The traditional concerns, improving durability and fuel economy over the life of the engine, remain additional requirements.**This volume offers a comprehensive treatment of modern practice aimed both at those in the field and newcomers interested in research and development for gas turbine combustors. Detailed description and assessment of a range of combustor design models and methods**Specification and evolution of fuels and fuel injectors**System models for fuel effects on engines and airframes**Evaluation of laser-based measurement techniques for combustor flow field studies
Gas Turbine Combustion
Title | Gas Turbine Combustion PDF eBook |
Author | Arthur H. Lefebvre |
Publisher | CRC Press |
Pages | 560 |
Release | 2010-04-26 |
Genre | Science |
ISBN | 1420086057 |
Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to po
GAS Turbine Combustion, Second Edition
Title | GAS Turbine Combustion, Second Edition PDF eBook |
Author | Arthur H. Lefebvre |
Publisher | CRC Press |
Pages | 420 |
Release | 1998-09-01 |
Genre | Technology & Engineering |
ISBN | 9781560326731 |
This revised edition provides understanding of the basic physical, chemical, and aerodynamic processes associated with gas turbine combustion and their relevance and application to combustor performance and design. It also introduces the many new concepts for ultra-low emissions combustors, and new advances in fuel preparation and liner wall-cooling techniques for their success. It details advanced and practical approaches to combustor design for the clean burning of alternative liquid fuels derived from oil shades, tar sands, and coal. Additional topics include diffusers, combustion performance fuel injection, combustion noise, heat transfer, and emissions.
Modern Gas Turbine Systems
Title | Modern Gas Turbine Systems PDF eBook |
Author | Peter Jansohn |
Publisher | Elsevier |
Pages | 849 |
Release | 2013-08-31 |
Genre | Technology & Engineering |
ISBN | 0857096060 |
Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuel-flexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering.The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility.Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field. - Provides a comprehensive review of gas turbine systems and fundamentals of a cycle - Examines the major components of modern systems, including compressors, combustors and turbines - Discusses the operation and maintenance of component parts
Gas Turbines for Electric Power Generation
Title | Gas Turbines for Electric Power Generation PDF eBook |
Author | S. Can Gülen |
Publisher | Cambridge University Press |
Pages | 735 |
Release | 2019-02-14 |
Genre | Business & Economics |
ISBN | 1108416659 |
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.
Gas Turbine Engineering Handbook
Title | Gas Turbine Engineering Handbook PDF eBook |
Author | Meherwan P. Boyce |
Publisher | Elsevier |
Pages | 956 |
Release | 2017-09-01 |
Genre | Mathematics |
ISBN | 0080456898 |
The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. - Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers - A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field - The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems
Commercial Aircraft Propulsion and Energy Systems Research
Title | Commercial Aircraft Propulsion and Energy Systems Research PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 123 |
Release | 2016-08-09 |
Genre | Technology & Engineering |
ISBN | 0309440998 |
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.