Nanometer CMOS ICs
Title | Nanometer CMOS ICs PDF eBook |
Author | Harry Veendrick |
Publisher | Springer Nature |
Pages | 697 |
Release | |
Genre | |
ISBN | 303164249X |
Analog Circuit Design
Title | Analog Circuit Design PDF eBook |
Author | Herman Casier |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2011-02-01 |
Genre | Technology & Engineering |
ISBN | 9400703910 |
Analog Circuit Design contains the contribution of 18 tutorials of the 19th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Robust Design, chaired by Herman Casier, Consultant Sigma Delta Converters, chaired by Prof. Michiel Steyaert, Catholic University Leuven RFID, chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
Analog IC Reliability in Nanometer CMOS
Title | Analog IC Reliability in Nanometer CMOS PDF eBook |
Author | Elie Maricau |
Publisher | Springer Science & Business Media |
Pages | 208 |
Release | 2013-01-11 |
Genre | Technology & Engineering |
ISBN | 1461461634 |
This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed. The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs.
Nano-scale CMOS Analog Circuits
Title | Nano-scale CMOS Analog Circuits PDF eBook |
Author | Soumya Pandit |
Publisher | CRC Press |
Pages | 397 |
Release | 2018-09-03 |
Genre | Technology & Engineering |
ISBN | 1466564288 |
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
CMOS RF Circuit Design for Reliability and Variability
Title | CMOS RF Circuit Design for Reliability and Variability PDF eBook |
Author | Jiann-Shiun Yuan |
Publisher | Springer |
Pages | 108 |
Release | 2016-04-13 |
Genre | Technology & Engineering |
ISBN | 9811008841 |
The subject of this book is CMOS RF circuit design for reliability. The device reliability and process variation issues on RF transmitter and receiver circuits will be particular interest to the readers in the field of semiconductor devices and circuits. This proposed book is unique to explore typical reliability issues in the device and technology level and then to examine their impact on RF wireless transceiver circuit performance. Analytical equations, experimental data, device and circuit simulation results will be given for clear explanation. The main benefit the reader derive from this book will be clear understanding on how device reliability issues affects the RF circuit performance subjected to operation aging and process variations.
Energy Efficient and Reliable Embedded Nanoscale SRAM Design
Title | Energy Efficient and Reliable Embedded Nanoscale SRAM Design PDF eBook |
Author | Bhupendra Singh Reniwal |
Publisher | CRC Press |
Pages | 213 |
Release | 2023-11-30 |
Genre | Technology & Engineering |
ISBN | 1000985156 |
This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.
Digital Integrated Circuit Design
Title | Digital Integrated Circuit Design PDF eBook |
Author | Hubert Kaeslin |
Publisher | Cambridge University Press |
Pages | 878 |
Release | 2008-04-28 |
Genre | Technology & Engineering |
ISBN | 0521882672 |
This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.