Design Examples - Design Examples for the 1996 FIP Recommendations 'Practical Design of Structural Concrete''

Design Examples - Design Examples for the 1996 FIP Recommendations 'Practical Design of Structural Concrete''
Title Design Examples - Design Examples for the 1996 FIP Recommendations 'Practical Design of Structural Concrete'' PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 206
Release 2002-01-01
Genre Technology & Engineering
ISBN 9782883940567

Download Design Examples - Design Examples for the 1996 FIP Recommendations 'Practical Design of Structural Concrete'' Book in PDF, Epub and Kindle

The 1996 FIP Recommendations Practical Design of Structural Concretewere finally published by SETO in September 1999. They had been developed based on the 1990 CEB-FIP Model Code. The main objective of this Bulletin is now to demonstrate by practical examples the application of these recommendations, and especially to illustrate the use of strut-and-tie models for designing discontinuity regions in concrete structures. These examples represent also a continuation of the 1990 FIP Handbook on Practical Design that had been based on the former (1984) version of the recommendations. Most of the examples are recently built existing structures. Although some of them may be considered as quite important, the chosen examples are by no means exceptional. The technical report does not deal with the discussion of aesthetic or general conceptual aspects. On the contrary, the main aim is to treat particular design aspects by selecting local regions of the chosen structures, that are then designed and detailed following the design principles and specifications proposed in the 1996 FIP Recommendations mentioned above. The document is believed to be of interest to all engaged in the design of structural concrete. It hopefully supports the use of more consistent design and detailing tools like strut-and-tie models.

FIP Handbook on Practical Design

FIP Handbook on Practical Design
Title FIP Handbook on Practical Design PDF eBook
Author Federation Internationale de la Precontrainte Staf
Publisher Thomas Telford
Pages 202
Release 1990
Genre Business & Economics
ISBN 9780727715708

Download FIP Handbook on Practical Design Book in PDF, Epub and Kindle

This book contains design calculations for eight different recently constructed bridges or structures, carefully chosen to provide a full picture of the practical applications of the CEB-FIP design codes. The emphasis is on ensuring safety, serviceability and durability in the design of structural concrete.

Design Examples for Strut-and-tie Models

Design Examples for Strut-and-tie Models
Title Design Examples for Strut-and-tie Models PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 225
Release 2011
Genre Technology & Engineering
ISBN 2883941017

Download Design Examples for Strut-and-tie Models Book in PDF, Epub and Kindle

fib Bulletin 61 is a continuation of fib Bulletin 16 (2002). Again the bulletin’s main objective is to demonstrate the application of the FIP Recommendations “Practical Design of Structural Concrete”, and especially to illustrate the use of strut-and-tie models to design discontinuity regions (D-regions) in concrete structures. Bulletin 61 presents 14 examples, most of which are existing structures built in recent years. Although some of the presented structures can be considered to be quite important and, in some instances, complex, the chosen examples are not intended to be exceptional. The main aim is to look at specific design aspects, by selecting D-regions of the presented structures that are designed and detailed according to the proposed design principles and specifications for the use of strut-and-tie models. Two papers at the end of the bulletin deal with the role of concrete tension fields in modelling with strut-and-tie models, and summarize the experiences gained by the Working Group in applying strut-and-tie models to the examples in the bulletin. It is hoped that fib Bulletin 61 will be of interest to engineers involved in the design of concrete structures, supporting the use of more consistent design and detailing tools such as strut-and-tie models.

Structural Concrete

Structural Concrete
Title Structural Concrete PDF eBook
Author Salah El-Metwally
Publisher CRC Press
Pages 230
Release 2017-10-02
Genre Technology & Engineering
ISBN 1498783856

Download Structural Concrete Book in PDF, Epub and Kindle

This book examines the application of strut-and-tie models (STM) for the design of structural concrete. It presents state-of-the-art information, from fundamental theories to practical engineering applications, and also provides innovative solutions for many design problems that are not otherwise achievable using the traditional methods.

Fibre-reinforced concrete:From design to structural applications

Fibre-reinforced concrete:From design to structural applications
Title Fibre-reinforced concrete:From design to structural applications PDF eBook
Author FIB - Féd. Int. du Béton
Publisher FIB - Féd. Int. du Béton
Pages 497
Release 2016
Genre Technology & Engineering
ISBN 288394119X

Download Fibre-reinforced concrete:From design to structural applications Book in PDF, Epub and Kindle

The FRC-2014 Workshop Fibre Reinforced Concrete: from Design to Structural Applications was the first ACI-fib joint technical event. The Workshop, held at Polytechnique Montreal (Canada) on July 24th and 25th 2014, was attended by 116 participants from 25 countries and 4 continents. The first international FRC workshop was held in Bergamo (Italy) in 2004. At that time, the lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. Ten years after Bergamo, many of the objectives identified at that time have been achieved. The use of fibre reinforced concrete (FRC) for designing structural members in bending and shear has recently been addressed in the fib Model Code 2010. Steel fibre reinforced concrete (SFRC) has also been used structurally in several building and bridge projects in Europe and North-America. SFRC has been widely used in segmental tunnel linings all over the world. Members of ACI544 and fib TG-4.1 have been involved in writing code based specifications for the design of FRC structural members. More than fifty papers were presented at the Workshop from which forty-four were selected for this joint ACI/fib publication. The papers are organised in the document under six themes: Design guidelines and specifications, Material properties for design, Behaviour and design of beams and columns, Behaviour and design of slabs and other structures, Behaviour and design of foundations and underground components, and finally, Applications in structure and underground construction projects.

Fibre Reinforced Concrete: From Design to Structural Applications

Fibre Reinforced Concrete: From Design to Structural Applications
Title Fibre Reinforced Concrete: From Design to Structural Applications PDF eBook
Author FIB – International Federation for Structural Concrete
Publisher FIB - International Federation for Structural Concrete
Pages 555
Release 2020-08-01
Genre Technology & Engineering
ISBN 2883941416

Download Fibre Reinforced Concrete: From Design to Structural Applications Book in PDF, Epub and Kindle

The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally.

Fire Design of Concrete Structures - Materials, Structures and Modelling

Fire Design of Concrete Structures - Materials, Structures and Modelling
Title Fire Design of Concrete Structures - Materials, Structures and Modelling PDF eBook
Author fib Fédération internationale du béton
Publisher fib Fédération internationale du béton
Pages 105
Release 2007-01-01
Genre Technology & Engineering
ISBN 2883940789

Download Fire Design of Concrete Structures - Materials, Structures and Modelling Book in PDF, Epub and Kindle

Fire design of concrete structures has emerged in recent years as a high profile subject of great interest to both experts and the public. This has been largely prompted by severe damage to concrete in a number of recent tunnel fires, as well as a considerable amount of research and development that has taken place world-wide. fib Task Group 4.3, "Fire Design of Concrete Structures", therefore took the initiative to develop this bulletin in order to present the results of this international research to a wider group of concrete professionals. The report presents a general brief outline of the effect of fire on both concrete material and concrete structures, with emphasis placed on the important developments of the past few years, namely: (a) the increasing use of high strength concrete (HSC) in buildings, tunnels and bridges; (b) the growing acceptance of the use of performance based fire engineering calculations for the structural analysis and design against fire; (c) the problem of, and solutions to, explosive spalling; and (d) fires in tunnels. This report is not intended to be an exhaustive review of the effect of fire on concrete and concrete structures, nor to present a database of properties at high temperature. Instead, the main aims of this document are to present recent trends and developments, highlight key influencing factors, bring together the disparate but related issues in one short document, highlight the deficiencies in current practice and point to the future. The basic principles of performance based codes and fire engineering are also presented on the assumption that the reader is not a specialist in this field.