Design and Analysis of Cross-Over Trials, Third Edition

Design and Analysis of Cross-Over Trials, Third Edition
Title Design and Analysis of Cross-Over Trials, Third Edition PDF eBook
Author Byron Jones
Publisher CRC Press
Pages 440
Release 2014-10-08
Genre Mathematics
ISBN 1439861420

Download Design and Analysis of Cross-Over Trials, Third Edition Book in PDF, Epub and Kindle

Design and Analysis of Cross-Over Trials is concerned with a specific kind of comparative trial known as the cross-over trial, in which subjects receive different sequences of treatments. Such trials are widely used in clinical and medical research, and in other diverse areas such as veterinary science, psychology, sports science, and agriculture. The first edition of this book was the first to be wholly devoted to the subject. The second edition was revised to mirror growth and development in areas where the design remained in widespread use and new areas where it had grown in importance. This new Third Edition: Contains seven new chapters written in the form of short case studies that address re-estimating sample size when testing for average bioequivalence, fitting a nonlinear dose response function, estimating a dose to take forward from phase two to phase three, establishing proof of concept, and recalculating the sample size using conditional power Employs the R package Crossover, specially created to accompany the book and provide a graphical user interface for locating designs in a large catalog and for searching for new designs Includes updates regarding the use of period baselines and the analysis of data from very small trials Reflects the availability of new procedures in SAS, particularly proc glimmix Presents the SAS procedure proc mcmc as an alternative to WinBUGS for Bayesian analysis Complete with real data and downloadable SAS code, Design and Analysis of Cross-Over Trials, Third Edition provides a practical understanding of the latest methods along with the necessary tools for implementation.

Design and Analysis of Cross-Over Trials, Second Edition

Design and Analysis of Cross-Over Trials, Second Edition
Title Design and Analysis of Cross-Over Trials, Second Edition PDF eBook
Author Byron Jones
Publisher CRC Press
Pages 412
Release 2003-03-12
Genre Mathematics
ISBN 9780412606403

Download Design and Analysis of Cross-Over Trials, Second Edition Book in PDF, Epub and Kindle

The first edition of Design and Analysis of Cross-Over Trials quickly became the standard reference on the subject and has remained so for more than 12 years. In that time, however, the use of cross-over trials has grown rapidly, particularly in the pharmaceutical arena, and researchers have made a number of advances in both the theory and methods applicable to these trials. Completely revised and updated, the long-awaited second edition of this classic text retains its predecessor's careful balance of theory and practice while incorporating new approaches, more data sets, and a broader scope. Enhancements in the second edition include: A new chapter on bioequivalence Recently developed methods for analyzing longitudinal continuous and categorical data Real-world examples using the SAS system A comprehensive catalog of designs, datasets, and SAS programs available on a companion Web site at www.crcpress.com The authors' exposition gives a clear, unified account of the design and analysis of cross-over trials from a statistical perspective along with their methodological underpinnings. With SAS programs and a thorough treatment of design issues, Design and Analysis of Cross-Over Trials, Second Edition sets a new standard for texts in this area and undoubtedly will be of direct practical value for years to come.

Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics
Title Introduction to High-Dimensional Statistics PDF eBook
Author Christophe Giraud
Publisher CRC Press
Pages 270
Release 2014-12-17
Genre Business & Economics
ISBN 1482237954

Download Introduction to High-Dimensional Statistics Book in PDF, Epub and Kindle

Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians

Statistical Analysis of Designed Experiments, Third Edition

Statistical Analysis of Designed Experiments, Third Edition
Title Statistical Analysis of Designed Experiments, Third Edition PDF eBook
Author Helge Toutenburg
Publisher Springer Science & Business Media
Pages 625
Release 2009-12-24
Genre Mathematics
ISBN 1441911480

Download Statistical Analysis of Designed Experiments, Third Edition Book in PDF, Epub and Kindle

This book is the third revised and updated English edition of the German textbook \Versuchsplanung und Modellwahl" by Helge Toutenburg which was based on more than 15 years experience of lectures on the course \- sign of Experiments" at the University of Munich and interactions with the statisticians from industries and other areas of applied sciences and en- neering. This is a type of resource/ reference book which contains statistical methods used by researchers in applied areas. Because of the diverse ex- ples combined with software demonstrations it is also useful as a textbook in more advanced courses, The applications of design of experiments have seen a signi?cant growth in the last few decades in di?erent areas like industries, pharmaceutical sciences, medical sciences, engineering sciences etc. The second edition of this book received appreciation from academicians, teachers, students and applied statisticians. As a consequence, Springer-Verlag invited Helge Toutenburg to revise it and he invited Shalabh for the third edition of the book. In our experience with students, statisticians from industries and - searchers from other ?elds of experimental sciences, we realized the importance of several topics in the design of experiments which will - crease the utility of this book. Moreover we experienced that these topics are mostly explained only theoretically in most of the available books.

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series
Title Hidden Markov Models for Time Series PDF eBook
Author Walter Zucchini
Publisher CRC Press
Pages 272
Release 2017-12-19
Genre Mathematics
ISBN 1315355205

Download Hidden Markov Models for Time Series Book in PDF, Epub and Kindle

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Applied Mixed Models in Medicine

Applied Mixed Models in Medicine
Title Applied Mixed Models in Medicine PDF eBook
Author Helen Brown
Publisher John Wiley & Sons
Pages 536
Release 2014-12-12
Genre Medical
ISBN 1118778235

Download Applied Mixed Models in Medicine Book in PDF, Epub and Kindle

A fully updated edition of this key text on mixed models,focusing on applications in medical research The application of mixed models is an increasingly popular wayof analysing medical data, particularly in the pharmaceuticalindustry. A mixed model allows the incorporation of both fixed andrandom variables within a statistical analysis, enabling efficientinferences and more information to be gained from the data. Therehave been many recent advances in mixed modelling, particularlyregarding the software and applications. This third edition ofBrown and Prescott’s groundbreaking text provides an updateon the latest developments, and includes guidance on the use ofcurrent SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixedmodels in medical research, including the latest developments andnew sections on incomplete block designs and the analysis ofbilateral data. Easily accessible to practitioners in any area where mixedmodels are used, including medical statisticians andeconomists. Includes numerous examples using real data from medical andhealth research, and epidemiology, illustrated with SAS code andoutput. Features the new version of SAS, including new graphics formodel diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, andfurther material. This third edition will appeal to applied statisticians workingin medical research and the pharmaceutical industry, as well asteachers and students of statistics courses in mixed models. Thebook will also be of great value to a broad range of scientists,particularly those working in the medical and pharmaceuticalareas.

Missing and Modified Data in Nonparametric Estimation

Missing and Modified Data in Nonparametric Estimation
Title Missing and Modified Data in Nonparametric Estimation PDF eBook
Author Sam Efromovich
Publisher CRC Press
Pages 867
Release 2018-03-12
Genre Mathematics
ISBN 135167983X

Download Missing and Modified Data in Nonparametric Estimation Book in PDF, Epub and Kindle

This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.