A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Title A Study in Derived Algebraic Geometry PDF eBook
Author Dennis Gaitsgory
Publisher American Mathematical Society
Pages 533
Release 2019-12-31
Genre Mathematics
ISBN 1470452847

Download A Study in Derived Algebraic Geometry Book in PDF, Epub and Kindle

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $mathrm{(}infty, 2mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $mathrm{(}infty, 2mathrm{)}$-categories needed for the third part.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Title A Study in Derived Algebraic Geometry PDF eBook
Author Dennis Gaitsgory
Publisher American Mathematical Soc.
Pages 577
Release 2017
Genre Mathematics
ISBN 1470435691

Download A Study in Derived Algebraic Geometry Book in PDF, Epub and Kindle

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of -categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the -category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on -categories needed for the third part.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Title A Study in Derived Algebraic Geometry PDF eBook
Author Dennis Gaitsgory
Publisher
Pages 0
Release 2017
Genre
ISBN

Download A Study in Derived Algebraic Geometry Book in PDF, Epub and Kindle

Motivic Homotopy Theory

Motivic Homotopy Theory
Title Motivic Homotopy Theory PDF eBook
Author Bjorn Ian Dundas
Publisher Springer Science & Business Media
Pages 228
Release 2007-07-11
Genre Mathematics
ISBN 3540458972

Download Motivic Homotopy Theory Book in PDF, Epub and Kindle

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Homotopical Algebraic Geometry II: Geometric Stacks and Applications

Homotopical Algebraic Geometry II: Geometric Stacks and Applications
Title Homotopical Algebraic Geometry II: Geometric Stacks and Applications PDF eBook
Author Bertrand Toën
Publisher American Mathematical Soc.
Pages 242
Release 2008
Genre Mathematics
ISBN 0821840991

Download Homotopical Algebraic Geometry II: Geometric Stacks and Applications Book in PDF, Epub and Kindle

This is the second part of a series of papers called "HAG", devoted to developing the foundations of homotopical algebraic geometry. The authors start by defining and studying generalizations of standard notions of linear algebra in an abstract monoidal model category, such as derivations, étale and smooth morphisms, flat and projective modules, etc. They then use their theory of stacks over model categories to define a general notion of geometric stack over a base symmetric monoidal model category $C$, and prove that this notion satisfies the expected properties.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Title A Study in Derived Algebraic Geometry PDF eBook
Author Dennis Gaitsgory
Publisher American Mathematical Society
Pages 436
Release 2020-10-07
Genre Mathematics
ISBN 1470452855

Download A Study in Derived Algebraic Geometry Book in PDF, Epub and Kindle

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in other parts of mathematics, most prominently in representation theory. This volume develops deformation theory, Lie theory and the theory of algebroids in the context of derived algebraic geometry. To that end, it introduces the notion of inf-scheme, which is an infinitesimal deformation of a scheme and studies ind-coherent sheaves on such. As an application of the general theory, the six-functor formalism for D-modules in derived geometry is obtained. This volume consists of two parts. The first part introduces the notion of ind-scheme and extends the theory of ind-coherent sheaves to inf-schemes, obtaining the theory of D-modules as an application. The second part establishes the equivalence between formal Lie group(oids) and Lie algebr(oids) in the category of ind-coherent sheaves. This equivalence gives a vast generalization of the equivalence between Lie algebras and formal moduli problems. This theory is applied to study natural filtrations in formal derived geometry generalizing the Hodge filtration.

Fourier-Mukai Transforms in Algebraic Geometry

Fourier-Mukai Transforms in Algebraic Geometry
Title Fourier-Mukai Transforms in Algebraic Geometry PDF eBook
Author Daniel Huybrechts
Publisher Oxford University Press
Pages 316
Release 2006-04-20
Genre Mathematics
ISBN 0199296863

Download Fourier-Mukai Transforms in Algebraic Geometry Book in PDF, Epub and Kindle

This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.