Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis
Title Deep Learning for Medical Image Analysis PDF eBook
Author S. Kevin Zhou
Publisher Academic Press
Pages 544
Release 2023-11-23
Genre Computers
ISBN 0323858880

Download Deep Learning for Medical Image Analysis Book in PDF, Epub and Kindle

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Deep Network Design for Medical Image Computing

Deep Network Design for Medical Image Computing
Title Deep Network Design for Medical Image Computing PDF eBook
Author Haofu Liao
Publisher Academic Press
Pages 266
Release 2022-08-24
Genre Computers
ISBN 0128244038

Download Deep Network Design for Medical Image Computing Book in PDF, Epub and Kindle

Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound image segmentation, 2D/3D medical image registration for intervention, metal artifact reduction, sparse-view artifact reduction, etc. For each topic, the book provides a deep learning-based solution that takes into account the medical or biological aspect of the problem and how the solution addresses a variety of important questions surrounding architecture, the design of deep learning techniques, when to introduce adversarial learning, and more. This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems. - Explains design principles of deep learning techniques for MIC - Contains cutting-edge deep learning research on MIC - Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images

Deep Learning in Medical Image Analysis

Deep Learning in Medical Image Analysis
Title Deep Learning in Medical Image Analysis PDF eBook
Author Gobert Lee
Publisher Springer Nature
Pages 184
Release 2020-02-06
Genre Medical
ISBN 3030331288

Download Deep Learning in Medical Image Analysis Book in PDF, Epub and Kindle

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
Title Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support PDF eBook
Author M. Jorge Cardoso
Publisher Springer
Pages 399
Release 2017-09-07
Genre Computers
ISBN 3319675583

Download Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Book in PDF, Epub and Kindle

This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017. The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
Title Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support PDF eBook
Author Danail Stoyanov
Publisher Springer
Pages 401
Release 2018-09-19
Genre Computers
ISBN 3030008894

Download Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Book in PDF, Epub and Kindle

This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing
Title Deep Learning and Convolutional Neural Networks for Medical Image Computing PDF eBook
Author Le Lu
Publisher Springer
Pages 327
Release 2017-07-12
Genre Computers
ISBN 331942999X

Download Deep Learning and Convolutional Neural Networks for Medical Image Computing Book in PDF, Epub and Kindle

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
Title Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 PDF eBook
Author Nassir Navab
Publisher Springer
Pages 801
Release 2015-09-28
Genre Computers
ISBN 3319245740

Download Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 Book in PDF, Epub and Kindle

The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions.