Deep Learning Techniques Applied to Affective Computing
Title | Deep Learning Techniques Applied to Affective Computing PDF eBook |
Author | Zhen Cui |
Publisher | Frontiers Media SA |
Pages | 151 |
Release | 2023-06-14 |
Genre | Science |
ISBN | 2832526365 |
Affective computing refers to computing that relates to, arises from, or influences emotions. The goal of affective computing is to bridge the gap between humans and machines and ultimately endow machines with emotional intelligence for improving natural human-machine interaction. In the context of human-robot interaction (HRI), it is hoped that robots can be endowed with human-like capabilities of observation, interpretation, and emotional expression. The research on affective computing has recently achieved extensive progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing concentrates on estimating human emotions through different forms of signals such as speech, face, text, EEG, fMRI, and many others. In neuroscience, the neural mechanisms of emotion are explored by combining neuroscience with the psychological study of personality, emotion, and mood. In psychology and philosophy, emotion typically includes a subjective, conscious experience characterized primarily by psychophysiological expressions, biological reactions, and mental states. The multi-disciplinary features of understanding “emotion” result in the fact that inferring the emotion of humans is definitely difficult. As a result, a multi-disciplinary approach is required to facilitate the development of affective computing. One of the challenging problems in affective computing is the affective gap, i.e., the inconsistency between the extracted feature representations and subjective emotions. To bridge the affective gap, various hand-crafted features have been widely employed to characterize subjective emotions. However, these hand-crafted features are usually low-level, and they may hence not be discriminative enough to depict subjective emotions. To address this issue, the recently-emerged deep learning (also called deep neural networks) techniques provide a possible solution. Due to the used multi-layer network structure, deep learning techniques are capable of learning high-level contributing features from a large dataset and have exhibited excellent performance in multiple application domains such as computer vision, signal processing, natural language processing, human-computer interaction, and so on. The goal of this Research Topic is to gather novel contributions on deep learning techniques applied to affective computing across the diverse fields of psychology, machine learning, neuroscience, education, behavior, sociology, and computer science to converge with those active in other research areas, such as speech emotion recognition, facial expression recognition, Electroencephalogram (EEG) based emotion estimation, human physiological signal (heart rate) estimation, affective human-robot interaction, multimodal affective computing, etc. We welcome researchers to contribute their original papers as well as review articles to provide works regarding the neural approach from computation to affective computing systems. This Research Topic aims to bring together research including, but not limited to: • Deep learning architectures and algorithms for affective computing tasks such as emotion recognition from speech, face, text, EEG, fMRI, and many others. • Explainability of deep Learning algorithms for affective computing. • Multi-task learning techniques for emotion, personality and depression detection, etc. • Novel datasets for affective computing • Applications of affective computing in robots, such as emotion-aware human-robot interaction and social robots, etc.
Applied Affective Computing
Title | Applied Affective Computing PDF eBook |
Author | Leimin Tian |
Publisher | Morgan & Claypool |
Pages | 308 |
Release | 2022-02-04 |
Genre | Computers |
ISBN | 1450395937 |
Affective computing is a nascent field situated at the intersection of artificial intelligence with social and behavioral science. It studies how human emotions are perceived and expressed, which then informs the design of intelligent agents and systems that can either mimic this behavior to improve their intelligence or incorporate such knowledge to effectively understand and communicate with their human collaborators. Affective computing research has recently seen significant advances and is making a critical transformation from exploratory studies to real-world applications in the emerging research area known as applied affective computing. This book offers readers an overview of the state-of-the-art and emerging themes in affective computing, including a comprehensive review of the existing approaches to affective computing systems and social signal processing. It provides in-depth case studies of applied affective computing in various domains, such as social robotics and mental well-being. It also addresses ethical concerns related to affective computing and how to prevent misuse of the technology in research and applications. Further, this book identifies future directions for the field and summarizes a set of guidelines for developing next-generation affective computing systems that are effective, safe, and human-centered. For researchers and practitioners new to affective computing, this book will serve as an introduction to the field to help them in identifying new research topics or developing novel applications. For more experienced researchers and practitioners, the discussions in this book provide guidance for adopting a human-centered design and development approach to advance affective computing.
Smart Computer Vision
Title | Smart Computer Vision PDF eBook |
Author | B. Vinoth Kumar |
Publisher | Springer Nature |
Pages | 359 |
Release | 2023-02-27 |
Genre | Technology & Engineering |
ISBN | 3031205413 |
This book addresses and disseminates research and development in the applications of intelligent techniques for computer vision, the field that works on enabling computers to see, identify, and process images in the same way that human vision does, and then providing appropriate output. The book provides contributions which include theory, case studies, and intelligent techniques pertaining to computer vision applications. The book helps readers grasp the essence of the recent advances in this complex field. The audience includes researchers, professionals, practitioners, and students from academia and industry who work in this interdisciplinary field. The authors aim to inspire future research both from theoretical and practical viewpoints to spur further advances in the field.
Affective Computing
Title | Affective Computing PDF eBook |
Author | Rosalind W. Picard |
Publisher | MIT Press |
Pages | 308 |
Release | 2000-07-24 |
Genre | Computers |
ISBN | 9780262661157 |
According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. The latest scientific findings indicate that emotions play an essential role in decision making, perception, learning, and more—that is, they influence the very mechanisms of rational thinking. Not only too much, but too little emotion can impair decision making. According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. Part 1 of this book provides the intellectual framework for affective computing. It includes background on human emotions, requirements for emotionally intelligent computers, applications of affective computing, and moral and social questions raised by the technology. Part 2 discusses the design and construction of affective computers. Although this material is more technical than that in Part 1, the author has kept it less technical than typical scientific publications in order to make it accessible to newcomers. Topics in Part 2 include signal-based representations of emotions, human affect recognition as a pattern recognition and learning problem, recent and ongoing efforts to build models of emotion for synthesizing emotions in computers, and the new application area of affective wearable computers.
Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support
Title | Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support PDF eBook |
Author | Kyandoghere Kyamakya |
Publisher | Springer Nature |
Pages | 290 |
Release | |
Genre | |
ISBN | 3031718216 |
The Oxford Handbook of Affective Computing
Title | The Oxford Handbook of Affective Computing PDF eBook |
Author | Rafael A. Calvo |
Publisher | Oxford Library of Psychology |
Pages | 625 |
Release | 2015 |
Genre | Computers |
ISBN | 0199942234 |
"The Oxford Handbook of Affective Computing is a definitive reference in the burgeoning field of affective computing (AC), a multidisciplinary field encompassing computer science, engineering, psychology, education, neuroscience, and other disciplines. AC research explores how affective factors influence interactions between humans and technology, how affect sensing and affect generation techniques can inform our understanding of human affect, and on the design, implementation, and evaluation of systems involving affect at their core. The volume features 41 chapters and is divided into five sections: history and theory, detection, generation, methodologies, and applications. Section 1 begins with the making of AC and a historical review of the science of emotion. The following chapters discuss the theoretical underpinnings of AC from an interdisciplinary viewpoint. Section 2 examines affect detection or recognition, a commonly investigated area. Section 3 focuses on aspects of affect generation, including the synthesis of emotion and its expression via facial features, speech, postures, and gestures. Cultural issues are also discussed. Section 4 focuses on methodological issues in AC research, including data collection techniques, multimodal affect databases, formats for the representation of emotion, crowdsourcing techniques, machine learning approaches, affect elicitation techniques, useful AC tools, and ethical issues. Finally, Section 5 highlights applications of AC in such domains as formal and informal learning, games, robotics, virtual reality, autism research, health care, cyberpsychology, music, deception, reflective writing, and cyberpsychology. This compendium will prove suitable for use as a textbook and serve as a valuable resource for everyone with an interest in AC."--
Principles and Applications of Socio-Cognitive and Affective Computing
Title | Principles and Applications of Socio-Cognitive and Affective Computing PDF eBook |
Author | Geetha, S. |
Publisher | IGI Global |
Pages | 280 |
Release | 2022-09-30 |
Genre | Computers |
ISBN | 1668438453 |
Recent advances in socio-cognitive and affective computing require further study as countless benefits and opportunities have emerged from these innovative technologies that may be useful in a number of contexts throughout daily life. In order to ensure these technologies are appropriately utilized across sectors, the challenges and strategies for adoption as well as potential uses must be thoroughly considered. Principles and Applications of Socio-Cognitive and Affective Computing discusses several aspects of affective interactions and concepts in affective computing, the fundamentals of emotions, and emerging research and exciting techniques for bridging the emotional disparity between humans and machines, all within the context of interactions. The book also considers problem and solution guidelines emerging in cognitive computing, thus summarizing the roadmap of current machine computational intelligence techniques for affective computing. Covering a range of topics such as social interaction, robotics, and virtual reality, this reference work is crucial for scientists, engineers, industry professionals, academicians, researchers, scholars, practitioners, instructors, and students.