Deep Learning in Object Recognition, Detection, and Segmentation
Title | Deep Learning in Object Recognition, Detection, and Segmentation PDF eBook |
Author | Xiaogang Wang |
Publisher | Foundations and Trends (R) in Signal Processing |
Pages | 186 |
Release | 2016-07-14 |
Genre | |
ISBN | 9781680831160 |
Deep Learning in Object Recognition, Detection, and Segmentation provides a comprehensive introductory overview of a topic that is having major impact on many areas of research in signal processing, computer vision, and machine learning.
Practical Machine Learning for Computer Vision
Title | Practical Machine Learning for Computer Vision PDF eBook |
Author | Valliappa Lakshmanan |
Publisher | "O'Reilly Media, Inc." |
Pages | 481 |
Release | 2021-07-21 |
Genre | Computers |
ISBN | 1098102339 |
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Deep Learning for Computer Vision
Title | Deep Learning for Computer Vision PDF eBook |
Author | Jason Brownlee |
Publisher | Machine Learning Mastery |
Pages | 564 |
Release | 2019-04-04 |
Genre | Computers |
ISBN |
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.
Computer Vision -- ECCV 2014
Title | Computer Vision -- ECCV 2014 PDF eBook |
Author | David Fleet |
Publisher | Springer |
Pages | 632 |
Release | 2014-09-22 |
Genre | Computers |
ISBN | 9783319105833 |
The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Title | Deep Learning and Convolutional Neural Networks for Medical Image Computing PDF eBook |
Author | Le Lu |
Publisher | Springer |
Pages | 327 |
Release | 2017-07-12 |
Genre | Computers |
ISBN | 331942999X |
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Deep Learning in Computer Vision
Title | Deep Learning in Computer Vision PDF eBook |
Author | Mahmoud Hassaballah |
Publisher | CRC Press |
Pages | 275 |
Release | 2020-03-23 |
Genre | Computers |
ISBN | 1351003801 |
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
Deep Learning in Object Detection and Recognition
Title | Deep Learning in Object Detection and Recognition PDF eBook |
Author | Xiaoyue Jiang |
Publisher | Springer |
Pages | 0 |
Release | 2020-11-27 |
Genre | Computers |
ISBN | 9789811506512 |
This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.