Deep Learning in Multi-step Prediction of Chaotic Dynamics
Title | Deep Learning in Multi-step Prediction of Chaotic Dynamics PDF eBook |
Author | Matteo Sangiorgio |
Publisher | Springer Nature |
Pages | 111 |
Release | 2022-02-14 |
Genre | Mathematics |
ISBN | 3030944824 |
The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation.
Special Topics in Information Technology
Title | Special Topics in Information Technology PDF eBook |
Author | Luigi Piroddi |
Publisher | Springer Nature |
Pages | 151 |
Release | 2022-01-01 |
Genre | Technology & Engineering |
ISBN | 3030859185 |
This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists.
Nonlinear Dynamics and Applications
Title | Nonlinear Dynamics and Applications PDF eBook |
Author | Santo Banerjee |
Publisher | Springer Nature |
Pages | 1433 |
Release | 2022-10-06 |
Genre | Science |
ISBN | 3030997928 |
This book covers recent trends and applications of nonlinear dynamics in various branches of society, science, and engineering. The selected peer-reviewed contributions were presented at the International Conference on Nonlinear Dynamics and Applications (ICNDA 2022) at Sikkim Manipal Institute of Technology (SMIT) and cover a broad swath of topics ranging from chaos theory and fractals to quantum systems and the dynamics of the COVID-19 pandemic. Organized by the SMIT Department of Mathematics, this international conference offers an interdisciplinary stage for scientists, researchers, and inventors to present and discuss the latest innovations and trends in all possible areas of nonlinear dynamics.
Nonlinear analysis and machine learning in cardiology
Title | Nonlinear analysis and machine learning in cardiology PDF eBook |
Author | Elena Tolkacheva |
Publisher | Frontiers Media SA |
Pages | 186 |
Release | |
Genre | Science |
ISBN | 2832522939 |
Flood Forecasting Using Machine Learning Methods
Title | Flood Forecasting Using Machine Learning Methods PDF eBook |
Author | Fi-John Chang |
Publisher | MDPI |
Pages | 376 |
Release | 2019-02-28 |
Genre | Technology & Engineering |
ISBN | 3038975486 |
Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.
Deep Learning for Marine Science
Title | Deep Learning for Marine Science PDF eBook |
Author | Haiyong Zheng |
Publisher | Frontiers Media SA |
Pages | 555 |
Release | 2024-05-15 |
Genre | Science |
ISBN | 2832549055 |
Deep learning (DL), mainly composed of deep and complex neural networks such as recurrent network and convolutional network, is an emerging research branch in the field of artificial intelligence and machine learning. DL revolution has a far-reaching impact on all scientific disciplines and every corner of our lives. With continuing technological advances, marine science is entering into the big data era with the exponential growth of information. DL is an effective means of harnessing the power of big data. Combined with unprecedented data from cameras, acoustic recorders, satellite remote sensing, and large model outputs, DL enables scientists to solve complex problems in biology, ecosystems, climate, energy, as well as physical and chemical interactions. Although DL has made great strides, it is still only beginning to emerge in many fields of marine science, especially towards representative applications and best practices for the automatic analysis of marine organisms and marine environments. DL in nowadays' marine science mainly leverages cutting-edge techniques of deep neural networks and massive data which collected by in-situ optical or acoustic imaging sensors for underwater applications, such as plankton classification and coral reef detection. This research topic aims to expand the applications of marine science to cover all aspects of detection, classification, segmentation, localization, and density estimation of marine objects, organisms, and phenomena.
Smart Trends in Computing and Communications
Title | Smart Trends in Computing and Communications PDF eBook |
Author | Tomonobu Senjyu |
Publisher | Springer Nature |
Pages | 518 |
Release | |
Genre | |
ISBN | 9819713293 |