Deep Learning in Mining of Visual Content

Deep Learning in Mining of Visual Content
Title Deep Learning in Mining of Visual Content PDF eBook
Author Akka Zemmari
Publisher Springer Nature
Pages 117
Release 2020-01-22
Genre Computers
ISBN 3030343766

Download Deep Learning in Mining of Visual Content Book in PDF, Epub and Kindle

This book provides the reader with the fundamental knowledge in the area of deep learning with application to visual content mining. The authors give a fresh view on Deep learning approaches both from the point of view of image understanding and supervised machine learning. It contains chapters which introduce theoretical and mathematical foundations of neural networks and related optimization methods. Then it discusses some particular very popular architectures used in the domain: convolutional neural networks and recurrent neural networks. Deep Learning is currently at the heart of most cutting edge technologies. It is in the core of the recent advances in Artificial Intelligence. Visual information in Digital form is constantly growing in volume. In such active domains as Computer Vision and Robotics visual information understanding is based on the use of deep learning. Other chapters present applications of deep learning for visual content mining. These include attention mechanisms in deep neural networks and application to digital cultural content mining. An additional application field is also discussed, and illustrates how deep learning can be of very high interest to computer-aided diagnostics of Alzheimer’s disease on multimodal imaging. This book targets advanced-level students studying computer science including computer vision, data analytics and multimedia. Researchers and professionals working in computer science, signal and image processing may also be interested in this book.

Deep Learning Illustrated

Deep Learning Illustrated
Title Deep Learning Illustrated PDF eBook
Author Jon Krohn
Publisher Addison-Wesley Professional
Pages 725
Release 2019-08-05
Genre Computers
ISBN 0135121728

Download Deep Learning Illustrated Book in PDF, Epub and Kindle

"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
Title Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks PDF eBook
Author Arindam Chaudhuri
Publisher Springer
Pages 109
Release 2019-04-06
Genre Computers
ISBN 9811374740

Download Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks Book in PDF, Epub and Kindle

This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition
Title Deep Learning for Robot Perception and Cognition PDF eBook
Author Alexandros Iosifidis
Publisher Academic Press
Pages 638
Release 2022-02-04
Genre Technology & Engineering
ISBN 0323885721

Download Deep Learning for Robot Perception and Cognition Book in PDF, Epub and Kindle

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Explainable Deep Learning AI

Explainable Deep Learning AI
Title Explainable Deep Learning AI PDF eBook
Author Jenny Benois-Pineau
Publisher Elsevier
Pages 348
Release 2023-02-20
Genre Computers
ISBN 0323993885

Download Explainable Deep Learning AI Book in PDF, Epub and Kindle

Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI – deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. - Provides an overview of main approaches to Explainable Artificial Intelligence (XAI) in the Deep Learning realm, including the most popular techniques and their use, concluding with challenges and exciting future directions of XAI - Explores the latest developments in general XAI methods for Deep Learning - Explains how XAI for Deep Learning is applied to various domains like images, medicine and natural language processing - Provides an overview of how XAI systems are tested and evaluated, specially with real users, a critical need in XAI

Multi-faceted Deep Learning

Multi-faceted Deep Learning
Title Multi-faceted Deep Learning PDF eBook
Author Jenny Benois-Pineau
Publisher Springer Nature
Pages 321
Release 2021-10-20
Genre Computers
ISBN 3030744787

Download Multi-faceted Deep Learning Book in PDF, Epub and Kindle

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

Deep Learning

Deep Learning
Title Deep Learning PDF eBook
Author Ian Goodfellow
Publisher MIT Press
Pages 801
Release 2016-11-10
Genre Computers
ISBN 0262337371

Download Deep Learning Book in PDF, Epub and Kindle

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.