Applications of Deep Learning and Big IoT on Personalized Healthcare Services
Title | Applications of Deep Learning and Big IoT on Personalized Healthcare Services PDF eBook |
Author | Wason, Ritika |
Publisher | IGI Global |
Pages | 248 |
Release | 2020-02-07 |
Genre | Medical |
ISBN | 1799821021 |
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Deep Learning for Healthcare Services IoT and Big Data Analytics
Title | Deep Learning for Healthcare Services IoT and Big Data Analytics PDF eBook |
Author | Parma Nand |
Publisher | Bentham Science Publishers |
Pages | 129 |
Release | 2023-07-07 |
Genre | Computers |
ISBN | 9815080245 |
This book highlights the applications of deep learning algorithms in implementing big data and IoT enabled smart solutions to treat and care for terminally ill patients. It presents 5 concise chapters showing how these technologies can empower the conventional doctor patient relationship in a more dynamic, transparent, and personalized manner. The key topics covered in this book include: - The Role of Deep Learning in Healthcare Industry: Limitations - Generative Adversarial Networks for Deep Learning in Healthcare - The Role of Blockchain in the Healthcare Sector - Brain Tumor Detection Based on Different Deep Neural Networks Key features include a thorough, research-based overview of technologies that can assist deep learning models in the healthcare sector, including architecture and industrial scope. The book also presents a robust image processing model for brain tumor screening. Through this book, the editors have attempted to combine numerous compelling views, guidelines and frameworks. Healthcare industry professionals will understand how Deep Learning can improve health care service delivery.
Artificial Intelligence and Big Data Analytics for Smart Healthcare
Title | Artificial Intelligence and Big Data Analytics for Smart Healthcare PDF eBook |
Author | Miltiadis Lytras |
Publisher | Academic Press |
Pages | 292 |
Release | 2021-10-22 |
Genre | Medical |
ISBN | 0128220627 |
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers
Big Data Analytics and Intelligence
Title | Big Data Analytics and Intelligence PDF eBook |
Author | Poonam Tanwar |
Publisher | Emerald Group Publishing |
Pages | 392 |
Release | 2020-09-30 |
Genre | Business & Economics |
ISBN | 1839090995 |
Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
Machine Learning Approach for Cloud Data Analytics in IoT
Title | Machine Learning Approach for Cloud Data Analytics in IoT PDF eBook |
Author | Sachi Nandan Mohanty |
Publisher | John Wiley & Sons |
Pages | 528 |
Release | 2021-07-14 |
Genre | Computers |
ISBN | 1119785855 |
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Machine Learning and the Internet of Medical Things in Healthcare
Title | Machine Learning and the Internet of Medical Things in Healthcare PDF eBook |
Author | Krishna Kant Singh |
Publisher | Academic Press |
Pages | 290 |
Release | 2021-04-14 |
Genre | Science |
ISBN | 012823217X |
Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies
Transforming Healthcare with Big Data and AI
Title | Transforming Healthcare with Big Data and AI PDF eBook |
Author | Alex Liu |
Publisher | IAP |
Pages | 184 |
Release | 2020-04-01 |
Genre | Computers |
ISBN | 1641138998 |
Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field. This book is the product of the Transforming Healthcare with Data conference, held at the University of Southern California. Many speakers and digital healthcare industry leaders contributed multidisciplinary expertise to chapters in this work. Authors’ backgrounds range from data scientists, healthcare experts, university professors, and digital healthcare entrepreneurs. If you have an understanding of data technologies and are interested in the future of Big Data and A.I. in healthcare, this book will provide a wealth of insights into the new landscape of healthcare.