Deep Learning Applications for Cyber Security
Title | Deep Learning Applications for Cyber Security PDF eBook |
Author | Mamoun Alazab |
Publisher | Springer |
Pages | 260 |
Release | 2019-08-14 |
Genre | Computers |
ISBN | 3030130576 |
Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.
Handbook of Research on Machine and Deep Learning Applications for Cyber Security
Title | Handbook of Research on Machine and Deep Learning Applications for Cyber Security PDF eBook |
Author | Ganapathi, Padmavathi |
Publisher | IGI Global |
Pages | 506 |
Release | 2019-07-26 |
Genre | Computers |
ISBN | 1522596135 |
As the advancement of technology continues, cyber security continues to play a significant role in todays world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.
Machine Learning and Cognitive Science Applications in Cyber Security
Title | Machine Learning and Cognitive Science Applications in Cyber Security PDF eBook |
Author | Khan, Muhammad Salman |
Publisher | IGI Global |
Pages | 338 |
Release | 2019-05-15 |
Genre | Computers |
ISBN | 1522581014 |
In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.
Machine Learning and Security
Title | Machine Learning and Security PDF eBook |
Author | Clarence Chio |
Publisher | "O'Reilly Media, Inc." |
Pages | 394 |
Release | 2018-01-26 |
Genre | Computers |
ISBN | 1491979852 |
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions
Confluence of AI, Machine, and Deep Learning in Cyber Forensics
Title | Confluence of AI, Machine, and Deep Learning in Cyber Forensics PDF eBook |
Author | Misra, Sanjay |
Publisher | IGI Global |
Pages | 248 |
Release | 2020-12-18 |
Genre | Law |
ISBN | 1799849015 |
Developing a knowledge model helps to formalize the difficult task of analyzing crime incidents in addition to preserving and presenting the digital evidence for legal processing. The use of data analytics techniques to collect evidence assists forensic investigators in following the standard set of forensic procedures, techniques, and methods used for evidence collection and extraction. Varieties of data sources and information can be uniquely identified, physically isolated from the crime scene, protected, stored, and transmitted for investigation using AI techniques. With such large volumes of forensic data being processed, different deep learning techniques may be employed. Confluence of AI, Machine, and Deep Learning in Cyber Forensics contains cutting-edge research on the latest AI techniques being used to design and build solutions that address prevailing issues in cyber forensics and that will support efficient and effective investigations. This book seeks to understand the value of the deep learning algorithm to handle evidence data as well as the usage of neural networks to analyze investigation data. Other themes that are explored include machine learning algorithms that allow machines to interact with the evidence, deep learning algorithms that can handle evidence acquisition and preservation, and techniques in both fields that allow for the analysis of huge amounts of data collected during a forensic investigation. This book is ideally intended for forensics experts, forensic investigators, cyber forensic practitioners, researchers, academicians, and students interested in cyber forensics, computer science and engineering, information technology, and electronics and communication.
Cyber Security and Digital Forensics
Title | Cyber Security and Digital Forensics PDF eBook |
Author | Sabyasachi Pramanik |
Publisher | John Wiley & Sons |
Pages | 300 |
Release | 2022-01-12 |
Genre | Computers |
ISBN | 1119795648 |
CYBER SECURITY AND DIGITAL FORENSICS Cyber security is an incredibly important issue that is constantly changing, with new methods, processes, and technologies coming online all the time. Books like this are invaluable to professionals working in this area, to stay abreast of all of these changes. Current cyber threats are getting more complicated and advanced with the rapid evolution of adversarial techniques. Networked computing and portable electronic devices have broadened the role of digital forensics beyond traditional investigations into computer crime. The overall increase in the use of computers as a way of storing and retrieving high-security information requires appropriate security measures to protect the entire computing and communication scenario worldwide. Further, with the introduction of the internet and its underlying technology, facets of information security are becoming a primary concern to protect networks and cyber infrastructures from various threats. This groundbreaking new volume, written and edited by a wide range of professionals in this area, covers broad technical and socio-economic perspectives for the utilization of information and communication technologies and the development of practical solutions in cyber security and digital forensics. Not just for the professional working in the field, but also for the student or academic on the university level, this is a must-have for any library. Audience: Practitioners, consultants, engineers, academics, and other professionals working in the areas of cyber analysis, cyber security, homeland security, national defense, the protection of national critical infrastructures, cyber-crime, cyber vulnerabilities, cyber-attacks related to network systems, cyber threat reduction planning, and those who provide leadership in cyber security management both in public and private sectors
Implications of Artificial Intelligence for Cybersecurity
Title | Implications of Artificial Intelligence for Cybersecurity PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 99 |
Release | 2020-01-27 |
Genre | Computers |
ISBN | 0309494508 |
In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.