Soft Computing for Complex Multiple Criteria Decision Making
Title | Soft Computing for Complex Multiple Criteria Decision Making PDF eBook |
Author | Ignacy Kaliszewski |
Publisher | Springer Science & Business Media |
Pages | 183 |
Release | 2006-06-07 |
Genre | Business & Economics |
ISBN | 0387301771 |
This book concentrates on providing technical tools to make the user of Multiple Criteria Decision Making (MCDM) methodologies independent of bulky optimization computations. These bulky computations have been a necessary, but limiting, characteristic of interactive MCDM methodologies and algorithms. The book removes these limitations of MCDM problems by reducing a problem's computational complexity. The result is a wider and more functional general framework for presenting, teaching, implementing and applying a wide range of MCDM methodologies.
Multi-objective Group Decision Making
Title | Multi-objective Group Decision Making PDF eBook |
Author | Jie Lu |
Publisher | Imperial College Press |
Pages | 407 |
Release | 2007 |
Genre | Business & Economics |
ISBN | 1860948596 |
This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.
Machine Learning for Decision Makers
Title | Machine Learning for Decision Makers PDF eBook |
Author | Patanjali Kashyap |
Publisher | Apress |
Pages | 381 |
Release | 2018-01-04 |
Genre | Computers |
ISBN | 1484229886 |
Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.
Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions
Title | Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions PDF eBook |
Author | Rafik Aziz Aliev |
Publisher | Springer |
Pages | 332 |
Release | 2013-01-12 |
Genre | Technology & Engineering |
ISBN | 3642348955 |
Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than computations over numbers and probabilities. The monograph exposes the foundations of a new decision theory with imperfect decision-relevant information on environment and a decision maker’s behavior. This theory is based on the synthesis of the fuzzy sets theory with perception-based information and the probability theory. The book is self containing and represents in a systematic way the decision theory with imperfect information into the educational systems. The book will be helpful for teachers and students of universities and colleges, for managers and specialists from various fields of business and economics, production and social sphere.
Decision Making with Spherical Fuzzy Sets
Title | Decision Making with Spherical Fuzzy Sets PDF eBook |
Author | Cengiz Kahraman |
Publisher | Springer Nature |
Pages | 551 |
Release | 2020-05-27 |
Genre | Technology & Engineering |
ISBN | 3030454614 |
This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.
Soft Computing in Case Based Reasoning
Title | Soft Computing in Case Based Reasoning PDF eBook |
Author | Sankar Kumar Pal |
Publisher | Springer Science & Business Media |
Pages | 380 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1447106873 |
This text demonstrates how various soft computing tools can be applied to design and develop methodologies and systems with case based reasoning, that is, for real-life decision-making or recognition problems. Comprising contributions from experts, it introduces the basic concepts and theories, and includes many reports on real-life applications. This book is of interest to graduate students and researchers in computer science, electrical engineering and information technology, as well as researchers and practitioners from the fields of systems design, pattern recognition and data mining.
Soft Computing in Economics and Finance
Title | Soft Computing in Economics and Finance PDF eBook |
Author | Ludmila Dymowa |
Publisher | Springer Science & Business Media |
Pages | 303 |
Release | 2011-01-21 |
Genre | Technology & Engineering |
ISBN | 3642177190 |
Currently the methods of Soft Computing are successfully used for risk analysis in: budgeting, e-commerce development, portfolio selection, Black-Scholes option pricing models, corporate acquisition systems, evaluating investments in advanced manufacturing technology, interactive fuzzy interval reasoning for smart web shopping, fuzzy scheduling and logistic. An essential feature of economic and financial problems it that there are always at least two criteria to be taken into account: profit maximization and risk minimization. Therefore, the economic and financial problems are multiple criteria ones. In this book, a new systematization of the problems of multiple criteria decision making is proposed which allows the author to reveal unsolved problems. The solutions of them are presented as well and implemented to deal with some important real-world problems such as investment project’s evaluation, tool steel material selection problem, stock screening and fuzzy logistic. It is well known that the best results in real -world applications can be obtained using the synthesis of modern methods of soft computing. Therefore, the developed by the author new approach to building effective stock trading systems, based on the synthesis of fuzzy logic and the Dempster-Shafer theory, seems to be a considerable contribution to the application of soft computing method in economics and finance. An important problem of capital budgeting is the fuzzy evaluation of the Internal Rate of Return. In this book, this problem is solved using a new method which makes it possible to solve linear and nonlinear interval and fuzzy equations and systems of them. The developed new method allows the author to obtain an effective solution of the Leontjev’s input-output problem in the interval setting.