Decay of the Fourier Transform
Title | Decay of the Fourier Transform PDF eBook |
Author | Alex Iosevich |
Publisher | Springer |
Pages | 226 |
Release | 2014-10-01 |
Genre | Mathematics |
ISBN | 3034806256 |
The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.
Fourier Analysis
Title | Fourier Analysis PDF eBook |
Author | Elias M. Stein |
Publisher | Princeton University Press |
Pages | 326 |
Release | 2011-02-11 |
Genre | Mathematics |
ISBN | 1400831237 |
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Mathematics of the Discrete Fourier Transform (DFT)
Title | Mathematics of the Discrete Fourier Transform (DFT) PDF eBook |
Author | Julius O. Smith |
Publisher | Julius Smith |
Pages | 323 |
Release | 2008 |
Genre | Fourier transformations |
ISBN | 097456074X |
"The DFT can be understood as a numerical approximation to the Fourier transform. However, the DFT has its own exact Fourier theory, and that is the focus of this book. The DFT is normally encountered as the Fast Fourier Transform (FFT)--a high-speed algorithm for computing the DFT. The FFT is used extensively in a wide range of digital signal processing applications, including spectrum analysis, high-speed convolution (linear filtering), filter banks, signal detection and estimation, system identification, audio compression (such as MPEG-II AAC), spectral modeling sound synthesis, and many others. In this book, certain topics in digital audio signal processing are introduced as example applications of the DFT"--Back cover
Fourier Analysis and Its Applications
Title | Fourier Analysis and Its Applications PDF eBook |
Author | G. B. Folland |
Publisher | American Mathematical Soc. |
Pages | 447 |
Release | 2009 |
Genre | Fourier analysis |
ISBN | 0821847902 |
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Fourier Analysis and Convexity
Title | Fourier Analysis and Convexity PDF eBook |
Author | Luca Brandolini |
Publisher | Springer Science & Business Media |
Pages | 288 |
Release | 2004-08-06 |
Genre | Mathematics |
ISBN | 9780817632632 |
Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians
The Fourier Transform and Its Applications
Title | The Fourier Transform and Its Applications PDF eBook |
Author | Ronald Newbold Bracewell |
Publisher | |
Pages | |
Release | 1978 |
Genre | Fourier transformations |
ISBN |
Fourier Transforms in the Complex Domain
Title | Fourier Transforms in the Complex Domain PDF eBook |
Author | Raymond Edward Alan Christopher Paley |
Publisher | American Mathematical Soc. |
Pages | 196 |
Release | 1934-12-31 |
Genre | Mathematics |
ISBN | 0821810197 |
With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of Munz and Szasz concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form $\sum^N_1A_ne^{i\lambda_nx}$, lacunary series, generalized harmonic analysis in the complex domain, the zeros of random functions, and many others.