De Rham Cohomology of Differential Modules on Algebraic Varieties
Title | De Rham Cohomology of Differential Modules on Algebraic Varieties PDF eBook |
Author | Yves André |
Publisher | Birkhäuser |
Pages | 223 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034883366 |
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
De Rham Cohomology of Differential Modules on Algebraic Varieties
Title | De Rham Cohomology of Differential Modules on Algebraic Varieties PDF eBook |
Author | Yves André |
Publisher | Springer Nature |
Pages | 250 |
Release | 2020-07-16 |
Genre | Mathematics |
ISBN | 303039719X |
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
On the De Rham Cohomology of Algebraic Varieties
Title | On the De Rham Cohomology of Algebraic Varieties PDF eBook |
Author | Robin Hartshorne |
Publisher | |
Pages | 215 |
Release | 1975 |
Genre | |
ISBN | 9780021060047 |
Lectures on Logarithmic Algebraic Geometry
Title | Lectures on Logarithmic Algebraic Geometry PDF eBook |
Author | Arthur Ogus |
Publisher | Cambridge University Press |
Pages | 559 |
Release | 2018-11-08 |
Genre | Mathematics |
ISBN | 1107187737 |
A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.
D-Modules, Perverse Sheaves, and Representation Theory
Title | D-Modules, Perverse Sheaves, and Representation Theory PDF eBook |
Author | Ryoshi Hotta |
Publisher | Springer Science & Business Media |
Pages | 408 |
Release | 2007-11-07 |
Genre | Mathematics |
ISBN | 081764363X |
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Geometry of Characteristic Classes
Title | Geometry of Characteristic Classes PDF eBook |
Author | Shigeyuki Morita |
Publisher | American Mathematical Soc. |
Pages | 202 |
Release | 2001 |
Genre | Mathematics |
ISBN | 0821821393 |
Characteristic classes are central to the modern study of the topology and geometry of manifolds. They were first introduced in topology, where, for instance, they could be used to define obstructions to the existence of certain fiber bundles. Characteristic classes were later defined (via the Chern-Weil theory) using connections on vector bundles, thus revealing their geometric side. In the late 1960s new theories arose that described still finer structures. Examples of the so-called secondary characteristic classes came from Chern-Simons invariants, Gelfand-Fuks cohomology, and the characteristic classes of flat bundles. The new techniques are particularly useful for the study of fiber bundles whose structure groups are not finite dimensional. The theory of characteristic classes of surface bundles is perhaps the most developed. Here the special geometry of surfaces allows one to connect this theory to the theory of moduli space of Riemann surfaces, i.e., Teichmüller theory. In this book Morita presents an introduction to the modern theories of characteristic classes.
A Course in Hodge Theory
Title | A Course in Hodge Theory PDF eBook |
Author | Hossein Movasati |
Publisher | |
Pages | 0 |
Release | 2021 |
Genre | Hodge theory |
ISBN | 9781571464002 |
Offers an examination of the precursors of Hodge theory: first, the studies of elliptic and abelian integrals by Cauchy, Abel, Jacobi, and Riemann; and then the studies of two-dimensional multiple integrals by Poincare and Picard. The focus turns to the Hodge theory of affine hypersurfaces given by tame polynomials.