Space-Efficient Data Structures, Streams, and Algorithms
Title | Space-Efficient Data Structures, Streams, and Algorithms PDF eBook |
Author | Andrej Brodnik |
Publisher | Springer |
Pages | 389 |
Release | 2013-08-13 |
Genre | Computers |
ISBN | 3642402739 |
This Festschrift volume, published in honour of J. Ian Munro, contains contributions written by some of his colleagues, former students, and friends. In celebration of his 66th birthday the colloquium "Conference on Space Efficient Data Structures, Streams and Algorithms" was held in Waterloo, ON, Canada, during August 15-16, 2013. The articles presented herein cover some of the main topics of Ian's research interests. Together they give a good overall perspective of the last 40 years of research in algorithms and data structures.
Algorithms and Data Structures for External Memory
Title | Algorithms and Data Structures for External Memory PDF eBook |
Author | Jeffrey Scott Vitter |
Publisher | Now Publishers Inc |
Pages | 192 |
Release | 2008 |
Genre | Computers |
ISBN | 1601981066 |
Describes several useful paradigms for the design and implementation of efficient external memory (EM) algorithms and data structures. The problem domains considered include sorting, permuting, FFT, scientific computing, computational geometry, graphs, databases, geographic information systems, and text and string processing.
Data Structures and Efficient Algorithms
Title | Data Structures and Efficient Algorithms PDF eBook |
Author | Burkhard Monien |
Publisher | Springer Science & Business Media |
Pages | 406 |
Release | 1992-05-20 |
Genre | Computers |
ISBN | 9783540554882 |
Myocarditis and idiopathic dilated cardiomyopathy are being increasingly recognized as important causes of heart disease and heart failure. Immunological mechanisms have long been suspected as playing a role in thesediseases but direct evidence has been lacking. Recently, animal models have be- come available, in which myocarditis can be induced either by infection with cardiotropic viruses or by autoimmuniza- tion with heart-specific antigens. This book presents and analyzes the latest information obtained from experimental models, relating it to the practical problems of diagnosis and treatment of myocarditis.
Algorithms and Data Structures for Massive Datasets
Title | Algorithms and Data Structures for Massive Datasets PDF eBook |
Author | Dzejla Medjedovic |
Publisher | Simon and Schuster |
Pages | 302 |
Release | 2022-08-16 |
Genre | Computers |
ISBN | 1638356564 |
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Algorithms and Data Structures
Title | Algorithms and Data Structures PDF eBook |
Author | Helmut Knebl |
Publisher | Springer Nature |
Pages | 349 |
Release | 2020-10-31 |
Genre | Computers |
ISBN | 303059758X |
This is a central topic in any computer science curriculum. To distinguish this textbook from others, the author considers probabilistic methods as being fundamental for the construction of simple and efficient algorithms, and in each chapter at least one problem is solved using a randomized algorithm. Data structures are discussed to the extent needed for the implementation of the algorithms. The specific algorithms examined were chosen because of their wide field of application. This book originates from lectures for undergraduate and graduate students. The text assumes experience in programming algorithms, especially with elementary data structures such as chained lists, queues, and stacks. It also assumes familiarity with mathematical methods, although the author summarizes some basic notations and results from probability theory and related mathematical terminology in the appendices. He includes many examples to explain the individual steps of the algorithms, and he concludes each chapter with numerous exercises.
Data Structures and Algorithms
Title | Data Structures and Algorithms PDF eBook |
Author | Kurt Mehlhorn |
Publisher | Springer |
Pages | 286 |
Release | 1984 |
Genre | Computers |
ISBN |
Algorithms and Data Structures in VLSI Design
Title | Algorithms and Data Structures in VLSI Design PDF eBook |
Author | Christoph Meinel |
Publisher | Springer Science & Business Media |
Pages | 271 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 3642589405 |
One of the main problems in chip design is the enormous number of possible combinations of individual chip elements within a system, and the problem of their compatibility. The recent application of data structures, efficient algorithms, and ordered binary decision diagrams (OBDDs) has proven vital in designing the computer chips of tomorrow. This book provides an introduction to the foundations of this interdisciplinary research area, emphasizing its applications in computer aided circuit design.