Data Stream Management

Data Stream Management
Title Data Stream Management PDF eBook
Author Minos Garofalakis
Publisher Springer
Pages 528
Release 2016-07-11
Genre Computers
ISBN 354028608X

Download Data Stream Management Book in PDF, Epub and Kindle

This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.

Data Stream Management

Data Stream Management
Title Data Stream Management PDF eBook
Author Lukasz Golab
Publisher Morgan & Claypool Publishers
Pages 65
Release 2010
Genre Computers
ISBN 1608452727

Download Data Stream Management Book in PDF, Epub and Kindle

In this lecture many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse's ability to manage Terabytes of historical data on secondary storage. Table of Contents: Introduction / Data Stream Management Systems / Streaming Data Warehouses / Conclusions

Stream Data Management

Stream Data Management
Title Stream Data Management PDF eBook
Author Nauman Chaudhry
Publisher Springer Science & Business Media
Pages 188
Release 2005-04-14
Genre Computers
ISBN 9780387243931

Download Stream Data Management Book in PDF, Epub and Kindle

Researchers in data management have recently recognized the importance of a new class of data-intensive applications that requires managing data streams, i.e., data composed of continuous, real-time sequence of items. Streaming applications pose new and interesting challenges for data management systems. Such application domains require queries to be evaluated continuously as opposed to the one time evaluation of a query for traditional applications. Streaming data sets grow continuously and queries must be evaluated on such unbounded data sets. These, as well as other challenges, require a major rethink of almost all aspects of traditional database management systems to support streaming applications. Stream Data Management comprises eight invited chapters by researchers active in stream data management. The collected chapters provide exposition of algorithms, languages, as well as systems proposed and implemented for managing streaming data. Stream Data Management is designed to appeal to researchers or practitioners already involved in stream data management, as well as to those starting out in this area. This book is also suitable for graduate students in computer science interested in learning about stream data management.

Data Streams

Data Streams
Title Data Streams PDF eBook
Author S. Muthukrishnan
Publisher Now Publishers Inc
Pages 136
Release 2005
Genre Computers
ISBN 193301914X

Download Data Streams Book in PDF, Epub and Kindle

In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.

Data Streams

Data Streams
Title Data Streams PDF eBook
Author Charu C. Aggarwal
Publisher Springer Science & Business Media
Pages 365
Release 2007-04-03
Genre Computers
ISBN 0387475346

Download Data Streams Book in PDF, Epub and Kindle

This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.

Data Stream Management

Data Stream Management
Title Data Stream Management PDF eBook
Author Lukasz Golab
Publisher Springer Nature
Pages 65
Release 2022-06-01
Genre Computers
ISBN 3031018370

Download Data Stream Management Book in PDF, Epub and Kindle

Many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. In general, a data stream is an unbounded data set that is produced incrementally over time, rather than being available in full before its processing begins. In this lecture, we give an overview of recent research in stream processing, ranging from answering simple queries on high-speed streams to loading real-time data feeds into a streaming warehouse for off-line analysis. We will discuss two types of systems for end-to-end stream processing: Data Stream Management Systems (DSMSs) and Streaming Data Warehouses (SDWs). A traditional database management system typically processes a stream of ad-hoc queries over relatively static data. In contrast, a DSMS evaluates static (long-running) queries on streaming data, making a single pass over the data and using limited working memory. In the first part of this lecture, we will discuss research problems in DSMSs, such as continuous query languages, non-blocking query operators that continually react to new data, and continuous query optimization. The second part covers SDWs, which combine the real-time response of a DSMS by loading new data as soon as they arrive with a data warehouse's ability to manage Terabytes of historical data on secondary storage. Table of Contents: Introduction / Data Stream Management Systems / Streaming Data Warehouses / Conclusions

Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing

Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
Title Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing PDF eBook
Author Simon James Fong
Publisher Springer Nature
Pages 228
Release 2020-08-25
Genre Technology & Engineering
ISBN 981156695X

Download Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing Book in PDF, Epub and Kindle

This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.