Data Source Handbook
Title | Data Source Handbook PDF eBook |
Author | Pete Warden |
Publisher | "O'Reilly Media, Inc." |
Pages | 40 |
Release | 2011-01-28 |
Genre | Computers |
ISBN | 1449303889 |
If you're a developer looking to supplement your own data tools and services, this concise ebook covers the most useful sources of public data available today. You'll find useful information on APIs that offer broad coverage, tie their data to the outside world, and are either accessible online or feature downloadable bulk data. You'll also find code and helpful links. This guide organizes APIs by the subjects they cover—such as websites, people, or places—so you can quickly locate the best resources for augmenting the data you handle in your own service. Categories include: Website tools such as WHOIS, bit.ly, and Compete Services that use email addresses as search terms, including Github Finding information from just a name, with APIs such as WhitePages Services, such as Klout, for locating people with Facebook and Twitter accounts Search APIs, including BOSS and Wikipedia Geographical data sources, including SimpleGeo and U.S. Census Company information APIs, such as CrunchBase and ZoomInfo APIs that list IP addresses, such as MaxMind Services that list books, films, music, and products
Data Processing Handbook for Complex Biological Data Sources
Title | Data Processing Handbook for Complex Biological Data Sources PDF eBook |
Author | Gauri Misra |
Publisher | Academic Press |
Pages | 191 |
Release | 2019-03-23 |
Genre | Science |
ISBN | 0128172800 |
Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened. - Explains how to interpret enormous amounts of data generated using several experimental approaches in simple terms, thus relating biology and physics at the atomic level - Presents sample data files and explains the usage of equations and web servers cited in research articles to extract useful information from their own biological data - Discusses, in detail, raw data files, data processing strategies, and the web based sources relevant for data processing
R for Data Science
Title | R for Data Science PDF eBook |
Author | Hadley Wickham |
Publisher | "O'Reilly Media, Inc." |
Pages | 521 |
Release | 2016-12-12 |
Genre | Computers |
ISBN | 1491910364 |
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Python Data Science Handbook
Title | Python Data Science Handbook PDF eBook |
Author | Jake VanderPlas |
Publisher | "O'Reilly Media, Inc." |
Pages | 609 |
Release | 2016-11-21 |
Genre | Computers |
ISBN | 1491912138 |
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
The Reference Guide to Data Sources
Title | The Reference Guide to Data Sources PDF eBook |
Author | Julia Bauder |
Publisher | American Library Association |
Pages | 183 |
Release | 2014-06-12 |
Genre | Computers |
ISBN | 0838912273 |
This concise sourcebook takes the guesswork out of locating the best sources of data, a process more important than ever as the data landscape grows increasingly cluttered. Much of the most frequently used data can be found free online, and this book shows readers how to look for it with the assistance of user-friendly tools. This thoroughly annotated guide will be a boon to library staff at public libraries, high school libraries, academic libraries, and other research institutions, with concentrated coverage of Data sources for frequently researched subjects such as agriculture, the earth sciences, economics, energy, political science, transportation, and many more The basics of data reference along with an overview of the most useful sources, focusing on free online sources of reliable statistics like government agencies and NGOs Statistical datasets, and how to understand and make use of them How to use article databases, WorldCat, and subject experts to find data Methods for citing data Survey Documentation and Analysis (SDA) software This guide cuts through the data jargon to help librarians and researchers find exactly what they're looking for.
The Data Journalism Handbook
Title | The Data Journalism Handbook PDF eBook |
Author | Jonathan Gray |
Publisher | "O'Reilly Media, Inc." |
Pages | 243 |
Release | 2012-07-12 |
Genre | Language Arts & Disciplines |
ISBN | 1449330029 |
When you combine the sheer scale and range of digital information now available with a journalist’s "nose for news" and her ability to tell a compelling story, a new world of possibility opens up. With The Data Journalism Handbook, you’ll explore the potential, limits, and applied uses of this new and fascinating field. This valuable handbook has attracted scores of contributors since the European Journalism Centre and the Open Knowledge Foundation launched the project at MozFest 2011. Through a collection of tips and techniques from leading journalists, professors, software developers, and data analysts, you’ll learn how data can be either the source of data journalism or a tool with which the story is told—or both. Examine the use of data journalism at the BBC, the Chicago Tribune, the Guardian, and other news organizations Explore in-depth case studies on elections, riots, school performance, and corruption Learn how to find data from the Web, through freedom of information laws, and by "crowd sourcing" Extract information from raw data with tips for working with numbers and statistics and using data visualization Deliver data through infographics, news apps, open data platforms, and download links
Handbook on Using Administrative Data for Research and Evidence-based Policy
Title | Handbook on Using Administrative Data for Research and Evidence-based Policy PDF eBook |
Author | Shawn Cole |
Publisher | Abdul Latif Jameel Poverty Action Lab |
Pages | 618 |
Release | 2021 |
Genre | |
ISBN | 9781736021606 |
This Handbook intends to inform Data Providers and researchers on how to provide privacy-protected access to, handle, and analyze administrative data, and to link them with existing resources, such as a database of data use agreements (DUA) and templates. Available publicly, the Handbook will provide guidance on data access requirements and procedures, data privacy, data security, property rights, regulations for public data use, data architecture, data use and storage, cost structure and recovery, ethics and privacy-protection, making data accessible for research, and dissemination for restricted access use. The knowledge base will serve as a resource for all researchers looking to work with administrative data and for Data Providers looking to make such data available.