Data Science in Engineering, Volume 10
Title | Data Science in Engineering, Volume 10 PDF eBook |
Author | Ramin Madarshahian |
Publisher | Springer Nature |
Pages | 185 |
Release | 2023-12-07 |
Genre | Computers |
ISBN | 3031349466 |
Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics
Data Science in Engineering Vol. 10
Title | Data Science in Engineering Vol. 10 PDF eBook |
Author | Thomas Matarazzo |
Publisher | Springer Nature |
Pages | 140 |
Release | |
Genre | |
ISBN | 3031681428 |
Data-Driven Science and Engineering
Title | Data-Driven Science and Engineering PDF eBook |
Author | Steven L. Brunton |
Publisher | Cambridge University Press |
Pages | 615 |
Release | 2022-05-05 |
Genre | Computers |
ISBN | 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Foundations of Data Science for Engineering Problem Solving
Title | Foundations of Data Science for Engineering Problem Solving PDF eBook |
Author | Parikshit Narendra Mahalle |
Publisher | Springer Nature |
Pages | 125 |
Release | 2021-08-21 |
Genre | Technology & Engineering |
ISBN | 9811651604 |
This book is one-stop shop which offers essential information one must know and can implement in real-time business expansions to solve engineering problems in various disciplines. It will also help us to make future predictions and decisions using AI algorithms for engineering problems. Machine learning and optimizing techniques provide strong insights into novice users. In the era of big data, there is a need to deal with data science problems in multidisciplinary perspective. In the real world, data comes from various use cases, and there is a need of source specific data science models. Information is drawn from various platforms, channels, and sectors including web-based media, online business locales, medical services studies, and Internet. To understand the trends in the market, data science can take us through various scenarios. It takes help of artificial intelligence and machine learning techniques to design and optimize the algorithms. Big data modelling and visualization techniques of collected data play a vital role in the field of data science. This book targets the researchers from areas of artificial intelligence, machine learning, data science and big data analytics to look for new techniques in business analytics and applications of artificial intelligence in recent businesses.
Big Data, Cloud Computing, Data Science & Engineering
Title | Big Data, Cloud Computing, Data Science & Engineering PDF eBook |
Author | Roger Lee |
Publisher | Springer |
Pages | 196 |
Release | 2018-08-13 |
Genre | Technology & Engineering |
ISBN | 3319968033 |
This book presents the outcomes of the 3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2018), which was held on July 10–12, 2018 in Kanazawa. The aim of the conference was to bring together researchers and scientists, businesspeople and entrepreneurs, teachers, engineers, computer users, and students to discuss the various fields of computer science, to share their experiences, and to exchange new ideas and information in a meaningful way. All aspects (theory, applications and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them are all explored here. The conference organizers selected the best papers from among those accepted for presentation. The papers were chosen on the basis of review scores submitted by members of the program committee and subsequently underwent further rigorous review. Following this second round of review, 13 of the conference’s most promising papers were selected for this Springer (SCI) book. We eagerly await the important contributions that we know these authors will make to the field of computer and information science.
Data Science: From Research to Application
Title | Data Science: From Research to Application PDF eBook |
Author | Mahdi Bohlouli |
Publisher | Springer Nature |
Pages | 350 |
Release | 2020-01-28 |
Genre | Technology & Engineering |
ISBN | 3030373096 |
This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0. Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017. This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems. Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.
Perspectives on Data Science for Software Engineering
Title | Perspectives on Data Science for Software Engineering PDF eBook |
Author | Tim Menzies |
Publisher | Morgan Kaufmann |
Pages | 410 |
Release | 2016-07-14 |
Genre | Computers |
ISBN | 0128042613 |
Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains