Data Science in Engineering Vol. 10
Title | Data Science in Engineering Vol. 10 PDF eBook |
Author | Thomas Matarazzo |
Publisher | Springer Nature |
Pages | 140 |
Release | |
Genre | |
ISBN | 3031681428 |
Data Science in Engineering, Volume 10
Title | Data Science in Engineering, Volume 10 PDF eBook |
Author | Ramin Madarshahian |
Publisher | Springer Nature |
Pages | 185 |
Release | 2023-12-07 |
Genre | Computers |
ISBN | 3031349466 |
Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics
Data-Driven Science and Engineering
Title | Data-Driven Science and Engineering PDF eBook |
Author | Steven L. Brunton |
Publisher | Cambridge University Press |
Pages | 615 |
Release | 2022-05-05 |
Genre | Computers |
ISBN | 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Foundations of Data Science for Engineering Problem Solving
Title | Foundations of Data Science for Engineering Problem Solving PDF eBook |
Author | Parikshit Narendra Mahalle |
Publisher | Springer Nature |
Pages | 125 |
Release | 2021-08-21 |
Genre | Technology & Engineering |
ISBN | 9811651604 |
This book is one-stop shop which offers essential information one must know and can implement in real-time business expansions to solve engineering problems in various disciplines. It will also help us to make future predictions and decisions using AI algorithms for engineering problems. Machine learning and optimizing techniques provide strong insights into novice users. In the era of big data, there is a need to deal with data science problems in multidisciplinary perspective. In the real world, data comes from various use cases, and there is a need of source specific data science models. Information is drawn from various platforms, channels, and sectors including web-based media, online business locales, medical services studies, and Internet. To understand the trends in the market, data science can take us through various scenarios. It takes help of artificial intelligence and machine learning techniques to design and optimize the algorithms. Big data modelling and visualization techniques of collected data play a vital role in the field of data science. This book targets the researchers from areas of artificial intelligence, machine learning, data science and big data analytics to look for new techniques in business analytics and applications of artificial intelligence in recent businesses.
Doing Data Science
Title | Doing Data Science PDF eBook |
Author | Cathy O'Neil |
Publisher | "O'Reilly Media, Inc." |
Pages | 320 |
Release | 2013-10-09 |
Genre | Computers |
ISBN | 144936389X |
Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Measurement and Data Analysis for Engineering and Science, Third Edition
Title | Measurement and Data Analysis for Engineering and Science, Third Edition PDF eBook |
Author | Patrick F. Dunn |
Publisher | CRC Press |
Pages | 634 |
Release | 2014-05-23 |
Genre | Technology & Engineering |
ISBN | 1466594969 |
The third edition of Measurement and Data Analysis for Engineering and Science provides an up-to-date approach to presenting the methods of experimentation in science and engineering. Widely adopted by colleges and universities within the U.S. and abroad, this edition has been developed as a modular work to make it more adaptable to different approaches from various schools. This text details current methods and highlights the six fundamental tools required for implementation: planning an experiment, identifying measurement system components, assessing measurement system component performance, setting signal sampling conditions, analyzing experimental results, and reporting experimental results. What’s New in the Third Edition: This latest edition includes a new chapter order that presents a logical sequence of topics in experimentation, from the planning of an experiment to the reporting of the experimental results. It adds a new chapter on sensors and transducers that describes approximately 50 different sensors commonly used in engineering, presents uncertainty analysis in two separate chapters, and provides a problem topic summary in each chapter. New topics include smart measurement systems, focusing on the Arduino® microcontroller and its use in the wireless transmission of data, and MATLAB® and Simulink® programming for microcontrollers. Further topic additions are on the rejection of data outliers, light radiation, calibrations of sensors, comparison of first-order sensor responses, the voltage divider, determining an appropriate sample period, and planning a successful experiment. Measurement and Data Analysis for Engineering and Science also contains more than 100 solved example problems, over 400 homework problems, and provides over 75 MATLAB® Sidebars with accompanying MATLAB M-files, Arduino codes, and data files available for download.
Big Data, Cloud Computing, Data Science & Engineering
Title | Big Data, Cloud Computing, Data Science & Engineering PDF eBook |
Author | Roger Lee |
Publisher | Springer |
Pages | 196 |
Release | 2018-08-13 |
Genre | Technology & Engineering |
ISBN | 3319968033 |
This book presents the outcomes of the 3rd IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2018), which was held on July 10–12, 2018 in Kanazawa. The aim of the conference was to bring together researchers and scientists, businesspeople and entrepreneurs, teachers, engineers, computer users, and students to discuss the various fields of computer science, to share their experiences, and to exchange new ideas and information in a meaningful way. All aspects (theory, applications and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them are all explored here. The conference organizers selected the best papers from among those accepted for presentation. The papers were chosen on the basis of review scores submitted by members of the program committee and subsequently underwent further rigorous review. Following this second round of review, 13 of the conference’s most promising papers were selected for this Springer (SCI) book. We eagerly await the important contributions that we know these authors will make to the field of computer and information science.