Data Science For Cyber-security
Title | Data Science For Cyber-security PDF eBook |
Author | Nicholas A Heard |
Publisher | World Scientific |
Pages | 305 |
Release | 2018-09-26 |
Genre | Computers |
ISBN | 178634565X |
Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.
Machine Intelligence and Big Data Analytics for Cybersecurity Applications
Title | Machine Intelligence and Big Data Analytics for Cybersecurity Applications PDF eBook |
Author | Yassine Maleh |
Publisher | Springer Nature |
Pages | 539 |
Release | 2020-12-14 |
Genre | Computers |
ISBN | 303057024X |
This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.
Cyber Threat Intelligence
Title | Cyber Threat Intelligence PDF eBook |
Author | Ali Dehghantanha |
Publisher | Springer |
Pages | 334 |
Release | 2018-04-27 |
Genre | Computers |
ISBN | 3319739514 |
This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes. The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions – this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.
Data Science in Cybersecurity and Cyberthreat Intelligence
Title | Data Science in Cybersecurity and Cyberthreat Intelligence PDF eBook |
Author | Leslie F. Sikos |
Publisher | Springer Nature |
Pages | 140 |
Release | 2020-02-05 |
Genre | Computers |
ISBN | 3030387887 |
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.
Machine Learning and Cognitive Science Applications in Cyber Security
Title | Machine Learning and Cognitive Science Applications in Cyber Security PDF eBook |
Author | Khan, Muhammad Salman |
Publisher | IGI Global |
Pages | 338 |
Release | 2019-05-15 |
Genre | Computers |
ISBN | 1522581014 |
In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.
Machine Learning Approaches in Cyber Security Analytics
Title | Machine Learning Approaches in Cyber Security Analytics PDF eBook |
Author | Tony Thomas |
Publisher | Springer Nature |
Pages | 217 |
Release | 2019-12-16 |
Genre | Computers |
ISBN | 9811517061 |
This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Handbook of Research on Machine and Deep Learning Applications for Cyber Security
Title | Handbook of Research on Machine and Deep Learning Applications for Cyber Security PDF eBook |
Author | Ganapathi, Padmavathi |
Publisher | IGI Global |
Pages | 506 |
Release | 2019-07-26 |
Genre | Computers |
ISBN | 1522596135 |
As the advancement of technology continues, cyber security continues to play a significant role in todays world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.