Data Science for Economics and Finance

Data Science for Economics and Finance
Title Data Science for Economics and Finance PDF eBook
Author Sergio Consoli
Publisher Springer Nature
Pages 357
Release 2021
Genre Application software
ISBN 3030668916

Download Data Science for Economics and Finance Book in PDF, Epub and Kindle

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Financial Data Analytics

Financial Data Analytics
Title Financial Data Analytics PDF eBook
Author Sinem Derindere Köseoğlu
Publisher Springer Nature
Pages 393
Release 2022-04-25
Genre Business & Economics
ISBN 3030837998

Download Financial Data Analytics Book in PDF, Epub and Kindle

​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.

Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition)

Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition)
Title Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition) PDF eBook
Author Graham L Giller
Publisher World Scientific
Pages 512
Release 2022-06-27
Genre Business & Economics
ISBN 9811251827

Download Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition) Book in PDF, Epub and Kindle

This book provides insights into the true nature of financial and economic data, and is a practical guide on how to analyze a variety of data sources. The focus of the book is on finance and economics, but it also illustrates the use of quantitative analysis and data science in many different areas. Lastly, the book includes practical information on how to store and process data and provides a framework for data driven reasoning about the world.The book begins with entertaining tales from Graham Giller's career in finance, starting with speculating in UK government bonds at the Oxford Post Office, accidentally creating a global instant messaging system that went 'viral' before anybody knew what that meant, on being the person who forgot to hit 'enter' to run a hundred-million dollar statistical arbitrage system, what he decoded from his brief time spent with Jim Simons, and giving Michael Bloomberg a tutorial on Granger Causality.The majority of the content is a narrative of analytic work done on financial, economics, and alternative data, structured around both Dr Giller's professional career and some of the things that just interested him. The goal is to stimulate interest in predictive methods, to give accurate characterizations of the true properties of financial, economic and alternative data, and to share what Richard Feynman described as 'The Pleasure of Finding Things Out.'

Data Analysis for Business, Economics, and Policy

Data Analysis for Business, Economics, and Policy
Title Data Analysis for Business, Economics, and Policy PDF eBook
Author Gábor Békés
Publisher Cambridge University Press
Pages 741
Release 2021-05-06
Genre Business & Economics
ISBN 1108483011

Download Data Analysis for Business, Economics, and Policy Book in PDF, Epub and Kindle

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.

Big Data Science in Finance

Big Data Science in Finance
Title Big Data Science in Finance PDF eBook
Author Irene Aldridge
Publisher John Wiley & Sons
Pages 336
Release 2021-01-08
Genre Computers
ISBN 1119602971

Download Big Data Science in Finance Book in PDF, Epub and Kindle

Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.

Data Science for Financial Econometrics

Data Science for Financial Econometrics
Title Data Science for Financial Econometrics PDF eBook
Author Nguyen Ngoc Thach
Publisher Springer Nature
Pages 633
Release 2020-11-13
Genre Computers
ISBN 3030488535

Download Data Science for Financial Econometrics Book in PDF, Epub and Kindle

This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques.

Data Science and Multiple Criteria Decision Making Approaches in Finance

Data Science and Multiple Criteria Decision Making Approaches in Finance
Title Data Science and Multiple Criteria Decision Making Approaches in Finance PDF eBook
Author Gökhan Silahtaroğlu
Publisher Springer Nature
Pages 183
Release 2021-05-29
Genre Business & Economics
ISBN 3030741761

Download Data Science and Multiple Criteria Decision Making Approaches in Finance Book in PDF, Epub and Kindle

This book considers and assesses essential financial issues by utilizing data science and fuzzy multiple criteria decision making (MCDM) methods. It introduces readers to a range of data science methods, and demonstrates their application in the fields of business, health, economics, finance and engineering. In addition, it provides suggestions based on the assessment results on each topic, which can help to enhance the efficiency of the financial system and the sustainability of economic development. Given its scope, the book will help readers broaden their perspective on the assessment and evaluation of financial issues using data science and MCDM approaches.