Data Mining in Agriculture
Title | Data Mining in Agriculture PDF eBook |
Author | Antonio Mucherino |
Publisher | Springer Science & Business Media |
Pages | 284 |
Release | 2009-09-22 |
Genre | Mathematics |
ISBN | 038788615X |
Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®.
Intelligent Data Mining and Fusion Systems in Agriculture
Title | Intelligent Data Mining and Fusion Systems in Agriculture PDF eBook |
Author | Xanthoula-Eirini Pantazi |
Publisher | Academic Press |
Pages | 334 |
Release | 2019-10-08 |
Genre | Business & Economics |
ISBN | 0128143924 |
Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. - Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture - Addresses AI use in weed management, disease detection, yield prediction and crop production - Utilizes case studies to provide real-world insights and direction
Applications of Image Processing and Soft Computing Systems in Agriculture
Title | Applications of Image Processing and Soft Computing Systems in Agriculture PDF eBook |
Author | Razmjooy, Navid |
Publisher | IGI Global |
Pages | 358 |
Release | 2019-02-22 |
Genre | Technology & Engineering |
ISBN | 152258028X |
The variety and abundance of qualitative characteristics of agricultural products have been the main reasons for the development of different types of non-destructive methods (NDTs). Quality control of these products is one of the most important tasks in manufacturing processes. The use of control and automation has become more widespread, and new approaches provide opportunities for production competition through new technologies. Applications of Image Processing and Soft Computing Systems in Agriculture examines applications of artificial intelligence in agriculture and the main uses of shape analysis on agricultural products such as relationships between form and genetics, adaptation, product characteristics, and product sorting. Additionally, it provides insights developed through computer vision techniques. Highlighting such topics as deep learning, agribusiness, and augmented reality, it is designed for academicians, researchers, agricultural practitioners, and industry professionals.
AI, Edge and IoT-based Smart Agriculture
Title | AI, Edge and IoT-based Smart Agriculture PDF eBook |
Author | Ajith Abraham |
Publisher | Academic Press |
Pages | 578 |
Release | 2021-11-10 |
Genre | Technology & Engineering |
ISBN | 0128236957 |
AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability
Modern Techniques for Agricultural Disease Management and Crop Yield Prediction
Title | Modern Techniques for Agricultural Disease Management and Crop Yield Prediction PDF eBook |
Author | Pradeep, N. |
Publisher | IGI Global |
Pages | 310 |
Release | 2019-08-16 |
Genre | Technology & Engineering |
ISBN | 1522596348 |
Since agriculture is one of the key parameters in assessing the gross domestic product (GDP) of any country, it has become crucial to transition from traditional agricultural practices to smart agriculture. New agricultural technologies provide numerous opportunities to maximize crop yield by recognizing and analyzing diseases and other natural variables that may affect it. Therefore, it is necessary to understand how computer-assisted technologies can best be utilized and adopted in the conversion to smart agriculture. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction is an essential publication that widens the spectrum of computational methods that can aid in agriculture disease management, weed detection, and crop yield prediction. Featuring coverage on a wide range of topics such as soil and crop sensors, swarm robotics, and weed detection, this book is ideally designed for environmentalists, farmers, botanists, agricultural engineers, computer engineers, scientists, researchers, practitioners, and students seeking current research on technology and techniques for agricultural diseases and predictive trends.
Spatial Data Mining
Title | Spatial Data Mining PDF eBook |
Author | Deren Li |
Publisher | Springer |
Pages | 329 |
Release | 2016-03-23 |
Genre | Computers |
ISBN | 3662485389 |
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Agricultural Internet of Things and Decision Support for Precision Smart Farming
Title | Agricultural Internet of Things and Decision Support for Precision Smart Farming PDF eBook |
Author | Annamaria Castrignano |
Publisher | Academic Press |
Pages | 472 |
Release | 2020-01-09 |
Genre | Business & Economics |
ISBN | 0128183748 |
Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies. - Presents the science behind smart technologies for agricultural management - Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space - Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable