Data Mining and Statistics for Decision Making
Title | Data Mining and Statistics for Decision Making PDF eBook |
Author | Stéphane Tufféry |
Publisher | John Wiley & Sons |
Pages | 738 |
Release | 2011-03-23 |
Genre | Mathematics |
ISBN | 0470979283 |
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.
Data Science and Multiple Criteria Decision Making Approaches in Finance
Title | Data Science and Multiple Criteria Decision Making Approaches in Finance PDF eBook |
Author | Gökhan Silahtaroğlu |
Publisher | Springer Nature |
Pages | 183 |
Release | 2021-05-29 |
Genre | Business & Economics |
ISBN | 3030741761 |
This book considers and assesses essential financial issues by utilizing data science and fuzzy multiple criteria decision making (MCDM) methods. It introduces readers to a range of data science methods, and demonstrates their application in the fields of business, health, economics, finance and engineering. In addition, it provides suggestions based on the assessment results on each topic, which can help to enhance the efficiency of the financial system and the sustainability of economic development. Given its scope, the book will help readers broaden their perspective on the assessment and evaluation of financial issues using data science and MCDM approaches.
Data Mining in Finance
Title | Data Mining in Finance PDF eBook |
Author | Boris Kovalerchuk |
Publisher | Springer Science & Business Media |
Pages | 323 |
Release | 2005-12-11 |
Genre | Computers |
ISBN | 0306470187 |
Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data. Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space. Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.
Financial Decision Making Using Computational Intelligence
Title | Financial Decision Making Using Computational Intelligence PDF eBook |
Author | Michael Doumpos |
Publisher | Springer Science & Business Media |
Pages | 336 |
Release | 2012-07-23 |
Genre | Business & Economics |
ISBN | 1461437733 |
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.
Perception-based Data Mining and Decision Making in Economics and Finance
Title | Perception-based Data Mining and Decision Making in Economics and Finance PDF eBook |
Author | Ildar Batyrshin |
Publisher | Springer Science & Business Media |
Pages | 374 |
Release | 2007-03-15 |
Genre | Computers |
ISBN | 3540362444 |
The primary goal of this book is to present to the scientific and management communities a selection of applications using recent Soft Computing (SC) and Computing with Words and Perceptions (CWP) models and techniques meant to solve some economics and financial problems that are of utmost importance. The book starts with a coverage of data mining tools and techniques that may be of use and significance for economic and financial analyses and applications. Notably, fuzzy and natural language based approaches and solutions for a more human consistent dealing with decision support, time series analysis, forecasting, clustering, etc. are discussed. The second part deals with various decision making models, particularly under probabilistic and fuzzy uncertainty, and their applications in solving a wide array of problems including portfolio optimization, option pricing, financial engineering, risk analysis etc. The selected examples could also serve as a starting point or as an opening out, in the SC and CWP techniques application to a wider range of problems in economics and finance.
Business Intelligence
Title | Business Intelligence PDF eBook |
Author | Carlo Vercellis |
Publisher | John Wiley & Sons |
Pages | 314 |
Release | 2011-08-10 |
Genre | Mathematics |
ISBN | 1119965470 |
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Big Data, Mining, and Analytics
Title | Big Data, Mining, and Analytics PDF eBook |
Author | Stephan Kudyba |
Publisher | CRC Press |
Pages | 306 |
Release | 2014-03-12 |
Genre | Computers |
ISBN | 1466568712 |
This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.