Data Mining and Machine Learning in Building Energy Analysis

Data Mining and Machine Learning in Building Energy Analysis
Title Data Mining and Machine Learning in Building Energy Analysis PDF eBook
Author Frédéric Magoules
Publisher John Wiley & Sons
Pages 187
Release 2016-01-05
Genre Computers
ISBN 1118577485

Download Data Mining and Machine Learning in Building Energy Analysis Book in PDF, Epub and Kindle

The energy consumption of a building has, in recent years, become a determining factor during its design and construction. With carbon footprints being a growing issue, it is important that buildings be optimized for energy conservation and CO2 reduction. This book therefore presents AI models and optimization techniques related to this application. The authors start with a review of recent models for the prediction of building energy consumption: engineering methods, statistical methods, artificial intelligence methods, ANNs and SVMs in particular. The book then focuses on SVMs, by first applying them to building energy consumption, then presenting the principles and various extensions, and SVR. The authors then move on to RDP, which they use to determine building energy faults through simulation experiments before presenting SVR model reduction methods and the benefits of parallel computing. The book then closes by presenting some of the current research and advancements in the field.

Data Mining and Machine Learning in Building Energy Analysis

Data Mining and Machine Learning in Building Energy Analysis
Title Data Mining and Machine Learning in Building Energy Analysis PDF eBook
Author Frédéric Magoules
Publisher John Wiley & Sons
Pages 186
Release 2016-01-05
Genre Computers
ISBN 1118577590

Download Data Mining and Machine Learning in Building Energy Analysis Book in PDF, Epub and Kindle

The energy consumption of a building has, in recent years, become a determining factor during its design and construction. With carbon footprints being a growing issue, it is important that buildings be optimized for energy conservation and CO2 reduction. This book therefore presents AI models and optimization techniques related to this application. The authors start with a review of recent models for the prediction of building energy consumption: engineering methods, statistical methods, artificial intelligence methods, ANNs and SVMs in particular. The book then focuses on SVMs, by first applying them to building energy consumption, then presenting the principles and various extensions, and SVR. The authors then move on to RDP, which they use to determine building energy faults through simulation experiments before presenting SVR model reduction methods and the benefits of parallel computing. The book then closes by presenting some of the current research and advancements in the field.

Transition to Sustainable Buildings

Transition to Sustainable Buildings
Title Transition to Sustainable Buildings PDF eBook
Author Organisation for Economic Co-operation and Development
Publisher Organization for Economic Co-Operation & Developme
Pages 292
Release 2013
Genre Architecture
ISBN

Download Transition to Sustainable Buildings Book in PDF, Epub and Kindle

Buildings are the largest energy consuming sector in the world, and account for over one-third of total final energy consumption and an equally important source of carbon dioxide (CO2) emissions. Achieving significant energy and emissions reduction in the buildings sector is a challenging but achievable policy goal. Transition to Sustainable Buildings presents detailed scenarios and strategies to 2050, and demonstrates how to reach deep energy and emissions reduction through a combination of best available technologies and intelligent public policy. This IEA study is an indispensible guide for decision makers, providing informative insights on: cost-effective options, key technologies and opportunities in the buildings sector; solutions for reducing electricity demand growth and flattening peak demand; effective energy efficiency policies and lessons learned from different countries; future trends and priorities for ASEAN, Brazil, China, the European Union, India, Mexico, Russia, South Africa and the United States; implementing a systems approach using innovative products in a cost effective manner; and pursuing whole-building (e.g. zero energy buildings) and advanced-component policies to initiate a fundamental shift in the way energy is consumed.

Inverse Heat Conduction

Inverse Heat Conduction
Title Inverse Heat Conduction PDF eBook
Author James V. Beck
Publisher James Beck
Pages 336
Release 1985-10-02
Genre Mathematics
ISBN 9780471083191

Download Inverse Heat Conduction Book in PDF, Epub and Kindle

Here is the only commercially published work to deal with the engineering problem of determining surface heat flux and temperature history based on interior temperature measurements. Provides the analytical techniques needed to arrive at otherwise difficult solutions, summarizing the findings of the last ten years. Topics include the steady state solution, Duhamel's Theorem, ill-posed problems, single future time step, and more.

Data-Driven Modelling of Non-Domestic Buildings Energy Performance

Data-Driven Modelling of Non-Domestic Buildings Energy Performance
Title Data-Driven Modelling of Non-Domestic Buildings Energy Performance PDF eBook
Author Saleh Seyedzadeh
Publisher Springer Nature
Pages 161
Release 2021-01-15
Genre Architecture
ISBN 303064751X

Download Data-Driven Modelling of Non-Domestic Buildings Energy Performance Book in PDF, Epub and Kindle

This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy. This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances. This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.

Building Energy Audits-Diagnosis and Retrofitting

Building Energy Audits-Diagnosis and Retrofitting
Title Building Energy Audits-Diagnosis and Retrofitting PDF eBook
Author Constantinos A. Balaras
Publisher MDPI
Pages 298
Release 2021-01-12
Genre Science
ISBN 3039438298

Download Building Energy Audits-Diagnosis and Retrofitting Book in PDF, Epub and Kindle

The book “Building Energy Audits-Diagnosis and Retrofitting” is a collection of twelve papers that focus on the built environment in order to systematically collect and analyze relevant data for the energy use profile of buildings and extended for the sustainability assessment of the built environment. The contributions address historic buildings, baselines for non-residential buildings from energy performance audits, and from in-situ measurements, monitoring, and analysis of data, and verification of energy saving and model calibration for various building types. The works report on how to diagnose existing problems and identify priorities, assess, and quantify the opportunities and measures that improve the overall building performance and the environmental quality and well-being of occupants in non-residential buildings and houses. Several case studies and lessons learned from the field are presented to help the readers identify, quantify, and prioritize effective energy conservation and efficiency measures. Finally, a new urban sustainability audit and rating method of the built environment addresses the complexities of the various issues involved, providing practical tools that can be adapted to match local priorities in order to diagnose and evaluate the current state and future scenarios towards meeting specific sustainable development goals and local priorities.

Data Mining Methods and Models

Data Mining Methods and Models
Title Data Mining Methods and Models PDF eBook
Author Daniel T. Larose
Publisher John Wiley & Sons
Pages 340
Release 2006-02-02
Genre Computers
ISBN 0471756474

Download Data Mining Methods and Models Book in PDF, Epub and Kindle

Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.