Data Mining and Analysis
Title | Data Mining and Analysis PDF eBook |
Author | Mohammed J. Zaki |
Publisher | Cambridge University Press |
Pages | 607 |
Release | 2014-05-12 |
Genre | Computers |
ISBN | 0521766338 |
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Data Mining and Machine Learning
Title | Data Mining and Machine Learning PDF eBook |
Author | Mohammed J. Zaki |
Publisher | Cambridge University Press |
Pages | 779 |
Release | 2020-01-30 |
Genre | Business & Economics |
ISBN | 1108473989 |
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Handbook of Statistical Analysis and Data Mining Applications
Title | Handbook of Statistical Analysis and Data Mining Applications PDF eBook |
Author | Ken Yale |
Publisher | Elsevier |
Pages | 824 |
Release | 2017-11-09 |
Genre | Mathematics |
ISBN | 0124166458 |
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Introduction to Data Mining and Analytics
Title | Introduction to Data Mining and Analytics PDF eBook |
Author | Kris Jamsa |
Publisher | Jones & Bartlett Learning |
Pages | 687 |
Release | 2020-02-03 |
Genre | Computers |
ISBN | 1284210480 |
Data Mining and Analytics provides a broad and interactive overview of a rapidly growing field. The exponentially increasing rate at which data is generated creates a corresponding need for professionals who can effectively handle its storage, analysis, and translation.
Commercial Data Mining
Title | Commercial Data Mining PDF eBook |
Author | David Nettleton |
Publisher | Elsevier |
Pages | 361 |
Release | 2014-01-29 |
Genre | Computers |
ISBN | 012416658X |
Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience
Statistical and Machine-Learning Data Mining
Title | Statistical and Machine-Learning Data Mining PDF eBook |
Author | Bruce Ratner |
Publisher | CRC Press |
Pages | 544 |
Release | 2012-02-28 |
Genre | Business & Economics |
ISBN | 1466551216 |
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Cluster Analysis and Data Mining
Title | Cluster Analysis and Data Mining PDF eBook |
Author | Ronald S. King |
Publisher | Mercury Learning and Information |
Pages | 363 |
Release | 2015-05-12 |
Genre | Computers |
ISBN | 1942270135 |
Cluster analysis is used in data mining and is a common technique for statistical data analysis used in many fields of study, such as the medical & life sciences, behavioral & social sciences, engineering, and in computer science. Designed for training industry professionals or for a course on clustering and classification, it can also be used as a companion text for applied statistics. No previous experience in clustering or data mining is assumed. Informal algorithms for clustering data and interpreting results are emphasized. In order to evaluate the results of clustering and to explore data, graphical methods and data structures are used for representing data. Throughout the text, examples and references are provided, in order to enable the material to be comprehensible for a diverse audience. A companion disc includes numerous appendices with programs, data, charts, solutions, etc. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected]. FEATURES *Places emphasis on illustrating the underlying logic in making decisions during the cluster analysis *Discusses the related applications of statistic, e.g., Ward’s method (ANOVA), JAN (regression analysis & correlational analysis), cluster validation (hypothesis testing, goodness-of-fit, Monte Carlo simulation, etc.) *Contains separate chapters on JAN and the clustering of categorical data *Includes a companion disc with solutions to exercises, programs, data sets, charts, etc.