Data-Driven Science and Engineering

Data-Driven Science and Engineering
Title Data-Driven Science and Engineering PDF eBook
Author Steven L. Brunton
Publisher Cambridge University Press
Pages 615
Release 2022-05-05
Genre Computers
ISBN 1009098489

Download Data-Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Data-Driven Identification of Networks of Dynamic Systems

Data-Driven Identification of Networks of Dynamic Systems
Title Data-Driven Identification of Networks of Dynamic Systems PDF eBook
Author Michel Verhaegen
Publisher Cambridge University Press
Pages 287
Release 2022-05-12
Genre Technology & Engineering
ISBN 1316515702

Download Data-Driven Identification of Networks of Dynamic Systems Book in PDF, Epub and Kindle

A comprehensive introduction to identifying network-connected systems, covering models and methods, and applications in adaptive optics.

Identification of Dynamic Systems

Identification of Dynamic Systems
Title Identification of Dynamic Systems PDF eBook
Author Rolf Isermann
Publisher Springer
Pages 705
Release 2011-04-08
Genre Technology & Engineering
ISBN 9783540871552

Download Identification of Dynamic Systems Book in PDF, Epub and Kindle

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Dynamic Mode Decomposition

Dynamic Mode Decomposition
Title Dynamic Mode Decomposition PDF eBook
Author J. Nathan Kutz
Publisher SIAM
Pages 241
Release 2016-11-23
Genre Science
ISBN 1611974496

Download Dynamic Mode Decomposition Book in PDF, Epub and Kindle

Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.

Automating Data-Driven Modelling of Dynamical Systems

Automating Data-Driven Modelling of Dynamical Systems
Title Automating Data-Driven Modelling of Dynamical Systems PDF eBook
Author Dhruv Khandelwal
Publisher Springer Nature
Pages 250
Release 2022-02-03
Genre Technology & Engineering
ISBN 3030903435

Download Automating Data-Driven Modelling of Dynamical Systems Book in PDF, Epub and Kindle

This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.

Data-driven Modelling and Scientific Machine Learning in Continuum Physics

Data-driven Modelling and Scientific Machine Learning in Continuum Physics
Title Data-driven Modelling and Scientific Machine Learning in Continuum Physics PDF eBook
Author Krishna Garikipati
Publisher Springer Nature
Pages 233
Release
Genre
ISBN 3031620291

Download Data-driven Modelling and Scientific Machine Learning in Continuum Physics Book in PDF, Epub and Kindle

Collaborative Computing: Networking, Applications and Worksharing

Collaborative Computing: Networking, Applications and Worksharing
Title Collaborative Computing: Networking, Applications and Worksharing PDF eBook
Author Honghao Gao
Publisher Springer Nature
Pages 757
Release 2022-01-01
Genre Computers
ISBN 3030926354

Download Collaborative Computing: Networking, Applications and Worksharing Book in PDF, Epub and Kindle

This two-volume set constitutes the refereed proceedings of the 17th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually. The 62 full papers and 7 short papers presented were carefully reviewed and selected from 206 submissions. The papers reflect the conference sessions as follows: Optimization for Collaborate System; Optimization based on Collaborative Computing; UVA and Traffic system; Recommendation System; Recommendation System & Network and Security; Network and Security; Network and Security & IoT and Social Networks; IoT and Social Networks & Images handling and human recognition; Images handling and human recognition & Edge Computing; Edge Computing; Edge Computing & Collaborative working; Collaborative working & Deep Learning and application; Deep Learning and application; Deep Learning and application; Deep Learning and application & UVA.