Data at Work

Data at Work
Title Data at Work PDF eBook
Author Jorge Camões
Publisher New Riders
Pages 545
Release 2016-04-08
Genre Business & Economics
ISBN 0134268784

Download Data at Work Book in PDF, Epub and Kindle

Information visualization is a language. Like any language, it can be used for multiple purposes. A poem, a novel, and an essay all share the same language, but each one has its own set of rules. The same is true with information visualization: a product manager, statistician, and graphic designer each approach visualization from different perspectives. Data at Work was written with you, the spreadsheet user, in mind. This book will teach you how to think about and organize data in ways that directly relate to your work, using the skills you already have. In other words, you don’t need to be a graphic designer to create functional, elegant charts: this book will show you how. Although all of the examples in this book were created in Microsoft Excel, this is not a book about how to use Excel. Data at Work will help you to know which type of chart to use and how to format it, regardless of which spreadsheet application you use and whether or not you have any design experience. In this book, you’ll learn how to extract, clean, and transform data; sort data points to identify patterns and detect outliers; and understand how and when to use a variety of data visualizations including bar charts, slope charts, strip charts, scatter plots, bubble charts, boxplots, and more. Because this book is not a manual, it never specifies the steps required to make a chart, but the relevant charts will be available online for you to download, with brief explanations of how they were created.

Big Data at Work

Big Data at Work
Title Big Data at Work PDF eBook
Author Thomas Davenport
Publisher Harvard Business Review Press
Pages 241
Release 2014-02-04
Genre Business & Economics
ISBN 1422168174

Download Big Data at Work Book in PDF, Epub and Kindle

Go ahead, be skeptical about big data. The author was—at first. When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind. Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold. This book will help you understand: • Why big data is important to you and your organization • What technology you need to manage it • How big data could change your job, your company, and your industry • How to hire, rent, or develop the kinds of people who make big data work • The key success factors in implementing any big data project • How big data is leading to a new approach to managing analytics With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Data Scientists at Work

Data Scientists at Work
Title Data Scientists at Work PDF eBook
Author Sebastian Gutierrez
Publisher Apress
Pages 348
Release 2014-12-12
Genre Computers
ISBN 143026599X

Download Data Scientists at Work Book in PDF, Epub and Kindle

Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. "Data scientist is the sexiest job in the 21st century," according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.

Big Data

Big Data
Title Big Data PDF eBook
Author Viktor Mayer-Schönberger
Publisher Houghton Mifflin Harcourt
Pages 257
Release 2013
Genre Business & Economics
ISBN 0544002695

Download Big Data Book in PDF, Epub and Kindle

A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.

Data for the People

Data for the People
Title Data for the People PDF eBook
Author Andreas Weigend
Publisher Basic Books
Pages 338
Release 2017-01-31
Genre Science
ISBN 0465096530

Download Data for the People Book in PDF, Epub and Kindle

A long-time chief data scientist at Amazon shows how open data can make everyone, not just corporations, richer Every time we Google something, Facebook someone, Uber somewhere, or even just turn on a light, we create data that businesses collect and use to make decisions about us. In many ways this has improved our lives, yet, we as individuals do not benefit from this wealth of data as much as we could. Moreover, whether it is a bank evaluating our credit worthiness, an insurance company determining our risk level, or a potential employer deciding whether we get a job, it is likely that this data will be used against us rather than for us. In Data for the People, Andreas Weigend draws on his years as a consultant for commerce, education, healthcare, travel and finance companies to outline how Big Data can work better for all of us. As of today, how much we benefit from Big Data depends on how closely the interests of big companies align with our own. Too often, outdated standards of control and privacy force us into unfair contracts with data companies, but it doesn't have to be this way. Weigend makes a powerful argument that we need to take control of how our data is used to actually make it work for us. Only then can we the people get back more from Big Data than we give it. Big Data is here to stay. Now is the time to find out how we can be empowered by it.

Data Feminism

Data Feminism
Title Data Feminism PDF eBook
Author Catherine D'Ignazio
Publisher MIT Press
Pages 328
Release 2020-03-31
Genre Social Science
ISBN 0262358530

Download Data Feminism Book in PDF, Epub and Kindle

A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Big Data at Work

Big Data at Work
Title Big Data at Work PDF eBook
Author Scott Tonidandel
Publisher Routledge
Pages 321
Release 2015-11-06
Genre Psychology
ISBN 1317702697

Download Big Data at Work Book in PDF, Epub and Kindle

The amount of data in our world has been exploding, and analyzing large data sets—so called big data—will become a key basis of competition in business. Statisticians and researchers will be updating their analytic approaches, methods and research to meet the demands created by the availability of big data. The goal of this book is to show how advances in data science have the ability to fundamentally influence and improve organizational science and practice. This book is primarily designed for researchers and advanced undergraduate and graduate students in psychology, management and statistics.