Data Analytics in Biomedical Engineering and Healthcare
Title | Data Analytics in Biomedical Engineering and Healthcare PDF eBook |
Author | Kun Chang Lee |
Publisher | Academic Press |
Pages | 298 |
Release | 2020-10-18 |
Genre | Science |
ISBN | 0128193158 |
Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
Handbook of Data Science Approaches for Biomedical Engineering
Title | Handbook of Data Science Approaches for Biomedical Engineering PDF eBook |
Author | Valentina Emilia Balas |
Publisher | Academic Press |
Pages | 320 |
Release | 2019-11-13 |
Genre | Science |
ISBN | 0128183195 |
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Leveraging Biomedical and Healthcare Data
Title | Leveraging Biomedical and Healthcare Data PDF eBook |
Author | Firas Kobeissy |
Publisher | Academic Press |
Pages | 228 |
Release | 2018-11-23 |
Genre | Medical |
ISBN | 012809561X |
Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers
Internet of Things in Biomedical Engineering
Title | Internet of Things in Biomedical Engineering PDF eBook |
Author | Valentina Emilia Balas |
Publisher | Academic Press |
Pages | 382 |
Release | 2019-06-14 |
Genre | Science |
ISBN | 0128173572 |
Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on 'daily life.' Contributors from various experts then discuss 'computer assisted anthropology,' CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. - Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications - Discusses big data and data mining in healthcare and other IoT based biomedical data analysis - Includes discussions on a variety of IoT applications and medical information systems - Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT
Healthcare Data Analytics and Management
Title | Healthcare Data Analytics and Management PDF eBook |
Author | Nilanjan Dey |
Publisher | Academic Press |
Pages | 342 |
Release | 2018-11-15 |
Genre | Science |
ISBN | 0128156368 |
Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges
Data Analytics in Medicine
Title | Data Analytics in Medicine PDF eBook |
Author | Information Resources Management Association |
Publisher | Medical Information Science Reference |
Pages | 2250 |
Release | 2019-11-18 |
Genre | |
ISBN | 9781799812043 |
""This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations"--
Computational Learning Approaches to Data Analytics in Biomedical Applications
Title | Computational Learning Approaches to Data Analytics in Biomedical Applications PDF eBook |
Author | Khalid Al-Jabery |
Publisher | Academic Press |
Pages | 312 |
Release | 2019-11-20 |
Genre | Technology & Engineering |
ISBN | 0128144831 |
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. - Includes an overview of data analytics in biomedical applications and current challenges - Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices - Provides complete coverage of computational and statistical analysis tools for biomedical data analysis - Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor