Cycles, Transfers, and Motivic Homology Theories. (AM-143)

Cycles, Transfers, and Motivic Homology Theories. (AM-143)
Title Cycles, Transfers, and Motivic Homology Theories. (AM-143) PDF eBook
Author Vladimir Voevodsky
Publisher Princeton University Press
Pages 262
Release 2000
Genre Mathematics
ISBN 0691048150

Download Cycles, Transfers, and Motivic Homology Theories. (AM-143) Book in PDF, Epub and Kindle

The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143

Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143
Title Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143 PDF eBook
Author Vladimir Voevodsky
Publisher Princeton University Press
Pages 261
Release 2011-11-12
Genre Mathematics
ISBN 140083712X

Download Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143 Book in PDF, Epub and Kindle

The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

Transcendental Aspects of Algebraic Cycles

Transcendental Aspects of Algebraic Cycles
Title Transcendental Aspects of Algebraic Cycles PDF eBook
Author S. Müller-Stach
Publisher Cambridge University Press
Pages 314
Release 2004-04-20
Genre Mathematics
ISBN 9780521545471

Download Transcendental Aspects of Algebraic Cycles Book in PDF, Epub and Kindle

Lecture notes for graduates or researchers wishing to enter this modern field of research.

Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology
Title Lecture Notes on Motivic Cohomology PDF eBook
Author Carlo Mazza
Publisher American Mathematical Soc.
Pages 240
Release 2006
Genre Mathematics
ISBN 9780821838471

Download Lecture Notes on Motivic Cohomology Book in PDF, Epub and Kindle

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Surveys on surgery theory : papers dedicated to C.T.C. Wall.

Surveys on surgery theory : papers dedicated to C.T.C. Wall.
Title Surveys on surgery theory : papers dedicated to C.T.C. Wall. PDF eBook
Author Sylvain Cappell
Publisher Princeton University Press
Pages 452
Release 2000
Genre
ISBN 9780691088143

Download Surveys on surgery theory : papers dedicated to C.T.C. Wall. Book in PDF, Epub and Kindle

Stable Homotopy Around the Arf-Kervaire Invariant

Stable Homotopy Around the Arf-Kervaire Invariant
Title Stable Homotopy Around the Arf-Kervaire Invariant PDF eBook
Author Victor P. Snaith
Publisher Springer Science & Business Media
Pages 250
Release 2009-03-28
Genre Mathematics
ISBN 376439904X

Download Stable Homotopy Around the Arf-Kervaire Invariant Book in PDF, Epub and Kindle

Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .

Quadratic Forms, Linear Algebraic Groups, and Cohomology

Quadratic Forms, Linear Algebraic Groups, and Cohomology
Title Quadratic Forms, Linear Algebraic Groups, and Cohomology PDF eBook
Author Skip Garibaldi
Publisher Springer Science & Business Media
Pages 344
Release 2010-07-16
Genre Mathematics
ISBN 1441962115

Download Quadratic Forms, Linear Algebraic Groups, and Cohomology Book in PDF, Epub and Kindle

Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.