Algebraic Curves and Riemann Surfaces
Title | Algebraic Curves and Riemann Surfaces PDF eBook |
Author | Rick Miranda |
Publisher | American Mathematical Soc. |
Pages | 414 |
Release | 1995 |
Genre | Mathematics |
ISBN | 0821802682 |
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Curves in Projective Space
Title | Curves in Projective Space PDF eBook |
Author | Joe Harris |
Publisher | Montréal : Presses de l'Université de Montréal |
Pages | 138 |
Release | 1982-01-01 |
Genre | Courbes algébriques |
ISBN | 9782760606036 |
Complex Algebraic Curves
Title | Complex Algebraic Curves PDF eBook |
Author | Frances Clare Kirwan |
Publisher | Cambridge University Press |
Pages | 278 |
Release | 1992-02-20 |
Genre | Mathematics |
ISBN | 9780521423533 |
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Algebraic Curves
Title | Algebraic Curves PDF eBook |
Author | Maxim E. Kazaryan |
Publisher | Springer |
Pages | 237 |
Release | 2019-01-21 |
Genre | Mathematics |
ISBN | 3030029433 |
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
Lectures on Curves, Surfaces and Projective Varieties
Title | Lectures on Curves, Surfaces and Projective Varieties PDF eBook |
Author | Mauro Beltrametti |
Publisher | European Mathematical Society |
Pages | 512 |
Release | 2009 |
Genre | Mathematics |
ISBN | 9783037190647 |
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Algebraic Geometry I
Title | Algebraic Geometry I PDF eBook |
Author | David Mumford |
Publisher | Springer |
Pages | 208 |
Release | 1976 |
Genre | Mathematics |
ISBN |
From the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" Zentralblatt
Algebraic Curves
Title | Algebraic Curves PDF eBook |
Author | William Fulton |
Publisher | |
Pages | 120 |
Release | 2008 |
Genre | Mathematics |
ISBN |
The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.