Current Trends in Concrete Fracture Research

Current Trends in Concrete Fracture Research
Title Current Trends in Concrete Fracture Research PDF eBook
Author Zdenek P. Bazant
Publisher Springer Science & Business Media
Pages 193
Release 2012-12-06
Genre Science
ISBN 9401136386

Download Current Trends in Concrete Fracture Research Book in PDF, Epub and Kindle

From time to time the International Journal of Fracture has presented matters thought to be of special interest to its readers. The last special topic review was presented by Drs W.G. Knauss and AJ. Rosakis as Guest Editors in four issues, January-April 1990, under the general title of Non Linear Fracture. It contained sections on damage mechanisms, interfaces and creep, time depen dence, and continuum plasticity insofar as they affect the mechanisms of the fracture process. Continuing this policy, which is consistent with our stated objectives, the two September issues deal with the behavior of concrete and cementious materials during fracture initiation and propagation. We hope that the ensuing state-of-the-art review will yield another instructive and timely product which readers will find useful. To assist us in presenting this subject, we have prevailed upon a well-known international expert in concrete behavior, Dr. Z.P. Bazant, Walter P. Murphy Professor of Civil Engineering, of Northwes tern University to act as Guest Editor. On behalf of the editors and publishers, I wish to thank Professor BaZant and his invited authors for undertaking this special effort. M.L. WILLIAMS Pittsburgh, Pennsylvania Editor-in-Chief September 1991 International Journal of Fracture 51: ix-xv, 1991. Z.P. Bafant (ed.), Current Trends in Concrete Fracture Research.

New Trends in Fracture Mechanics of Concrete

New Trends in Fracture Mechanics of Concrete
Title New Trends in Fracture Mechanics of Concrete PDF eBook
Author Alberto Carpinteri
Publisher CRC Press
Pages 664
Release 2007-05-31
Genre Technology & Engineering
ISBN 9780415440653

Download New Trends in Fracture Mechanics of Concrete Book in PDF, Epub and Kindle

New Trends in Fracture Mechanics of Concrete contains Volume 1 of the Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-6, Catania, Italy, 17-22 June 2007). It is divided into four parts: (1) Theoretical and Numerical Methods in Fracture Mechanics of Concrete; (2) Experimental Methods in Fracture Mechanics of Concrete; (3) Constitutive Damage Modelling of Concrete; (4) Time Effects in the Damage and Fracture of Concrete. Over the last twenty years, many theoretical, numerical and experimental methods have evolved in the field of Fracture Mechanics of Concrete. These have led to practical applications in reinforced-concrete design, assessment, monitoring and retrofitting, as well as innovative high-performance and durable cementitious materials. Although Fracture Mechanics of Concrete is now mature as a framework for defining and solving a variety of engineering problems, there is still much work to be done in improving previous theoretical and numerical models, and for re-interpreting established phenomena. In particular, there are new developments in the treatment of scale effects; the implementation of 3D-discretisation; and the combination of continuous and discontinuous models. Other areas of rapid progress are the development of innovative testing techniques; the proposal of non-local and anisotropic constitutive laws; the formulation of lattice and multiscale models, and the development of coupled multifield theories. The other two volumes comprising the Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures are Design, Assessment and Retrofitting of RC Structures; and High-Performance Concrete, Brick-Masonry and Environmental Aspects. The set presents a wealth of information, and will be useful to professional civil engineers, postgraduate students and researchers.

Concrete Fracture Models and Applications

Concrete Fracture Models and Applications
Title Concrete Fracture Models and Applications PDF eBook
Author Shailendra Kumar
Publisher Springer Science & Business Media
Pages 279
Release 2011-02-08
Genre Technology & Engineering
ISBN 3642167640

Download Concrete Fracture Models and Applications Book in PDF, Epub and Kindle

Cementitious materials, rocks and fibre-reinforced composites commonly termed as quasibrittle, need a different fracture mechanics approach to model the crack propagation study because of the presence of significant size of fracture process zone ahead of the crack-tip. Recent studies show that concrete structures manifest three important stages in fracture process: crack initiation, stable crack propagation and unstable fracture or failure. Fracture Mechanics concept can better explain the above various stages including the concepts of ductility, size-effect, strain softening and post-cracking behavior of concrete and concrete structures. The book presents a basic introduction on the various nonlinear concrete fracture models considering the respective fracture parameters. To this end, a thorough state-of-the-art review on various aspects of the material behavior and development of different concrete fracture models is presented. The development of cohesive crack model for standard test geometries using commonly used softening functions is shown and extensive studies on the behavior of cohesive crack fracture parameters are also carried out. The subsequent chapter contains the extensive study on the double-K and double-G fracture parameters in which some recent developments on the related fracture parameters are illustrated including introduction of weight function method to Double-K Fracture Model and formulization of size-effect behavior of the double-K fracture parameters. The application of weight function approach for determining of the KR-curve associated with cohesive stress distribution in the fracture process zone is also presented. Available test data are used to validate the new approach. Further, effect of specimen geometry, loading condition, size-effect and softening function on various fracture parameters is investigated. Towards the end, a comparative study between different fracture parameters obtained from various models is presented.

Fracture Mechanics of Concrete

Fracture Mechanics of Concrete
Title Fracture Mechanics of Concrete PDF eBook
Author Surendra P. Shah
Publisher John Wiley & Sons
Pages 588
Release 1995-09-28
Genre Technology & Engineering
ISBN 9780471303114

Download Fracture Mechanics of Concrete Book in PDF, Epub and Kindle

FRACTURE MECHANICS OF CONCRETE AND ROCK This book offers engineers a unique opportunity to learn, frominternationally recognized leaders in their field, about the latesttheoretical advances in fracture mechanics in concrete, reinforcedconcrete structures, and rock. At the same time, it functions as asuperb, graduate-level introduction to fracture mechanics conceptsand analytical techniques. Reviews, in depth, the basic theory behind fracture mechanics * Covers the application of fracture mechanics to compressionfailure, creep, fatigue, torsion, and other advanced topics * Extremely well researched, applies experimental evidence ofdamage to a wide range of design cases * Supplies all relevant formulas for stress intensity * Covers state-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Describes nonlinear fracture mechanics (NLFM) and the latestRILEM modeling techniques for testing nonlinear quasi-brittlematerials * And much more Over the past few years, researchers employing techniques borrowedfrom fracture mechanics have made many groundbreaking discoveriesconcerning the causes and effects of cracking, damage, andfractures of plain and reinforced concrete structures and rock.This, in turn, has resulted in the further development andrefinement of fracture mechanics concepts and tools. Yet, despitethe field's growth and the growing conviction that fracturemechanics is indispensable to an understanding of material andstructural failure, there continues to be a surprising shortage oftextbooks and professional references on the subject. Written by two of the foremost names in the field, FractureMechanics of Concrete fills that gap. The most comprehensive bookever written on the subject, it consolidates the latest theoreticalresearch from around the world in a single reference that can beused by students and professionals alike. Fracture Mechanics of Concrete is divided into two sections. In thefirst, the authors lay the necessary groundwork with an in-depthreview of fundamental principles. In the second section, theauthors vividly demonstrate how fracture mechanics has beensuccessfully applied to failures occurring in a wide array ofdesign cases. Key topics covered in these sections include: * State-of-the-art linear elastic fracture mechanics (LEFM)techniques for analyzing deformations and cracking * Nonlinear fracture mechanics (NLFM) and the latest RILEM modelingtechniques for testing nonlinear quasi-brittle materials * The use of R-Curves to describe cracking and fracture inquasi-brittle materials * The application of fracture mechanics to compression failure,creep, fatigue, torsion, and other advanced topics The most timely, comprehensive, and authoritative book on thesubject currently available, Fracture Mechanics of Concrete is botha complete instructional tool for academics and students instructural and geotechnical engineering courses, and anindispensable working resource for practicing engineers.

Concrete Fracture

Concrete Fracture
Title Concrete Fracture PDF eBook
Author Jan G.M. van Mier
Publisher CRC Press
Pages 383
Release 2012-10-25
Genre Technology & Engineering
ISBN 1466554703

Download Concrete Fracture Book in PDF, Epub and Kindle

The study of fracture mechanics of concrete has developed in recent years to the point where it can be used for assessing the durability of concrete structures and for the development of new concrete materials. The last decade has seen a gradual shift of interest toward fracture studies at increasingly smaller sizes and scales. Concrete Fracture: A Multiscale Approach explores fracture properties of cement and concrete based on their actual material structure. Concrete is a complex hierarchical material, containing material structural elements spanning scales from the nano- to micro- and meso-level. Therefore, multi-scale approaches are essential for a better understanding of mechanical properties and fracture in particular. This volume includes various examples of fracture analyses at the micro- and meso-level. The book presents models accompanied by reliable experiments and explains how these experiments are performed. It also provides numerous examples of test methods and requirements for evaluating quasi-brittle materials. More importantly, it proposes a new modeling approach based on multiscale interaction potential and examines the related experimental challenges facing research engineers and building professionals. The book’s comprehensive coverage is poised to encourage new initiatives for overcoming the difficulties encountered when performing fracture experiments on cement at the micro-size/scale and smaller. The author demonstrates how the obtained results can fit into the larger picture of the material science of concrete—particularly the design of new high-performance concrete materials which can be put to good use in the development of efficient and durable structures.

Crack Analysis in Structural Concrete

Crack Analysis in Structural Concrete
Title Crack Analysis in Structural Concrete PDF eBook
Author Zihai Shi
Publisher Butterworth-Heinemann
Pages 342
Release 2009-06-17
Genre Technology & Engineering
ISBN 0080942229

Download Crack Analysis in Structural Concrete Book in PDF, Epub and Kindle

This new book on the fracture mechanics of concrete focuses on the latest developments in computational theories, and how to apply those theories to solve real engineering problems. Zihai Shi uses his extensive research experience to present detailed examination of multiple-crack analysis and mixed-mode fracture.Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field with extensive new research and development. In recent years many different models and applications have been proposed for crack analysis; the author assesses these in turn, identifying their limitations and offering a detailed treatment of those which have been proved to be robust by comprehensive use. After introducing stress singularity in numerical modelling and some basic modelling techniques, the Extended Fictitious Crack Model (EFCM) for multiple-crack analysis is explained with numerical application examples. This theoretical model is then applied to study two important issues in fracture mechanics - crack interaction and localization, and fracture modes and maximum loads. The EFCM is then reformulated to include the shear transfer mechanism on crack surfaces and the method is used to study experimental problems. With a carefully balanced mixture of theory, experiment and application, Crack Analysis in Structural Concrete is an important contribution to this fast-developing field of structural analysis in concrete. Latest theoretical models analysed and tested Detailed assessment of multiple crack analysis and multi-mode fractures Applications designed for solving real-life engineering problems

Concrete Technology: New Trends, Industrial Applications

Concrete Technology: New Trends, Industrial Applications
Title Concrete Technology: New Trends, Industrial Applications PDF eBook
Author A. Aguado
Publisher CRC Press
Pages 377
Release 1994-11-10
Genre Architecture
ISBN 1482271583

Download Concrete Technology: New Trends, Industrial Applications Book in PDF, Epub and Kindle

This book forms the Proceedings of an RILEM workshop in Barcelona in November 1994. It is structured as a series of presentations/reviews by some of the leading international researchers and technical experts of the concrete world. Coverage ranges from developments in materials science, through performance and behaviour of concrete, to manufacturin