Current Trends in Algebraic Topology

Current Trends in Algebraic Topology
Title Current Trends in Algebraic Topology PDF eBook
Author Richard M. Kane
Publisher American Mathematical Soc.
Pages 542
Release 1982-01-01
Genre Mathematics
ISBN 9780821860038

Download Current Trends in Algebraic Topology Book in PDF, Epub and Kindle

Proceedings of a Conference held at the University of Western Ontario in 1981. More than one hundred papers were presented by researchers from a wide spectrum of countries and institutions.

Algebraic Topology: New Trends in Localization and Periodicity

Algebraic Topology: New Trends in Localization and Periodicity
Title Algebraic Topology: New Trends in Localization and Periodicity PDF eBook
Author Carles Broto
Publisher Birkhäuser
Pages 405
Release 2012-12-06
Genre Mathematics
ISBN 3034890184

Download Algebraic Topology: New Trends in Localization and Periodicity Book in PDF, Epub and Kindle

Central to this collection of papers are new developments in the general theory of localization of spaces. This field has undergone tremendous change of late and is yielding new insight into the mysteries of classical homotopy theory. The present volume comprises the refereed articles submitted at the Conference on Algebraic Topology held in Sant Feliu de Guíxols, Spain, in June 1994. Several comprehensive articles on general localization clarify the basic tools and give a report on the state of the art in the subject matter. The text is therefore accessible not only to the professional mathematician but also to the advanced student.

Elements of Point Set Topology

Elements of Point Set Topology
Title Elements of Point Set Topology PDF eBook
Author John D. Baum
Publisher Courier Corporation
Pages 164
Release 1991-01-01
Genre Mathematics
ISBN 0486668266

Download Elements of Point Set Topology Book in PDF, Epub and Kindle

Topology continues to be a topic of prime importance in contemporary mathematics, but until the publication of this book there were few if any introductions to topology for undergraduates. This book remedied that need by offering a carefully thought-out, graduated approach to point set topology at the undergraduate level. To make the book as accessible as possible, the author approaches topology from a geometric and axiomatic standpoint; geometric, because most students come to the subject with a good deal of geometry behind them, enabling them to use their geometric intuition; axiomatic, because it parallels the student's experience with modern algebra, and keeps the book in harmony with current trends in mathematics. After a discussion of such preliminary topics as the algebra of sets, Euler-Venn diagrams and infinite sets, the author takes up basic definitions and theorems regarding topological spaces (Chapter 1). The second chapter deals with continuous functions (mappings) and homeomorphisms, followed by two chapters on special types of topological spaces (varieties of compactness and varieties of connectedness). Chapter 5 covers metric spaces. Since basic point set topology serves as a foundation not only for functional analysis but also for more advanced work in point set topology and algebraic topology, the author has included topics aimed at students with interests other than analysis. Moreover, Dr. Baum has supplied quite detailed proofs in the beginning to help students approaching this type of axiomatic mathematics for the first time. Similarly, in the first part of the book problems are elementary, but they become progressively more difficult toward the end of the book. References have been supplied to suggest further reading to the interested student.

Current Developments in Algebraic Geometry

Current Developments in Algebraic Geometry
Title Current Developments in Algebraic Geometry PDF eBook
Author Lucia Caporaso
Publisher Cambridge University Press
Pages 437
Release 2012-03-19
Genre Mathematics
ISBN 052176825X

Download Current Developments in Algebraic Geometry Book in PDF, Epub and Kindle

This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.

Topics in Cohomological Studies of Algebraic Varieties

Topics in Cohomological Studies of Algebraic Varieties
Title Topics in Cohomological Studies of Algebraic Varieties PDF eBook
Author Piotr Pragacz
Publisher Springer Science & Business Media
Pages 321
Release 2006-03-30
Genre Mathematics
ISBN 3764373423

Download Topics in Cohomological Studies of Algebraic Varieties Book in PDF, Epub and Kindle

The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis

Algebraic Topology of Finite Topological Spaces and Applications

Algebraic Topology of Finite Topological Spaces and Applications
Title Algebraic Topology of Finite Topological Spaces and Applications PDF eBook
Author Jonathan A. Barmak
Publisher Springer Science & Business Media
Pages 184
Release 2011-08-24
Genre Mathematics
ISBN 3642220029

Download Algebraic Topology of Finite Topological Spaces and Applications Book in PDF, Epub and Kindle

This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.

More Concise Algebraic Topology

More Concise Algebraic Topology
Title More Concise Algebraic Topology PDF eBook
Author J. P. May
Publisher University of Chicago Press
Pages 544
Release 2012-02
Genre Mathematics
ISBN 0226511782

Download More Concise Algebraic Topology Book in PDF, Epub and Kindle

With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.