Cubic Fields with Geometry
Title | Cubic Fields with Geometry PDF eBook |
Author | Samuel A. Hambleton |
Publisher | Springer |
Pages | 503 |
Release | 2018-11-07 |
Genre | Mathematics |
ISBN | 3030014045 |
The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-understand source for learning about Voronoi’s unit algorithm and several classical results which are still relevant to the field, and a book which helps bridge a gap in understanding connections between algebraic geometry and number theory. The exposition includes numerous discussions on calculating with cubic fields including simple continued fractions of cubic irrational numbers, arithmetic using integer matrices, ideal class group computations, lattices over cubic fields, construction of cubic fields with a given discriminant, the search for elements of norm 1 of a cubic field with rational parametrization, and Voronoi's algorithm for finding a system of fundamental units. Throughout, the discussions are framed in terms of a binary cubic form that may be used to describe a given cubic field. This unifies the chapters of this book despite the diversity of their number theoretic topics.
Dynamics, Statistics and Projective Geometry of Galois Fields
Title | Dynamics, Statistics and Projective Geometry of Galois Fields PDF eBook |
Author | V. I. Arnold |
Publisher | Cambridge University Press |
Pages | 91 |
Release | 2010-12-02 |
Genre | Mathematics |
ISBN | 1139493442 |
V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.
Cubic Forms and the Circle Method
Title | Cubic Forms and the Circle Method PDF eBook |
Author | Tim Browning |
Publisher | Springer Nature |
Pages | 175 |
Release | 2021-11-19 |
Genre | Mathematics |
ISBN | 3030868729 |
The Hardy–Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Algebraic Function Fields and Codes
Title | Algebraic Function Fields and Codes PDF eBook |
Author | Henning Stichtenoth |
Publisher | Springer Science & Business Media |
Pages | 360 |
Release | 2009-02-11 |
Genre | Mathematics |
ISBN | 3540768785 |
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Number Theory and Geometry: An Introduction to Arithmetic Geometry
Title | Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF eBook |
Author | Álvaro Lozano-Robledo |
Publisher | American Mathematical Soc. |
Pages | 506 |
Release | 2019-03-21 |
Genre | Mathematics |
ISBN | 147045016X |
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
Undergraduate Algebraic Geometry
Title | Undergraduate Algebraic Geometry PDF eBook |
Author | Miles Reid |
Publisher | Cambridge University Press |
Pages | 144 |
Release | 1988-12-15 |
Genre | Mathematics |
ISBN | 9780521356626 |
Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.
Classical Algebraic Geometry
Title | Classical Algebraic Geometry PDF eBook |
Author | Igor V. Dolgachev |
Publisher | Cambridge University Press |
Pages | 653 |
Release | 2012-08-16 |
Genre | Mathematics |
ISBN | 1139560786 |
Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.