Computational Symmetry in Computer Vision and Computer Graphics
Title | Computational Symmetry in Computer Vision and Computer Graphics PDF eBook |
Author | Yanxi Liu |
Publisher | Now Publishers Inc |
Pages | 209 |
Release | 2010 |
Genre | Computers |
ISBN | 1601983646 |
In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago by the first author, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. The recent resurging interests in computational symmetry for computer vision and computer graphics applications have shown promising results. Recognizing the fundamental relevance and potential power that computational symmetry affords, we offer this survey to the computer vision and computer graphics communities. This survey provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.
Mathematical Descriptors of Molecules and Biomolecules
Title | Mathematical Descriptors of Molecules and Biomolecules PDF eBook |
Author | Subhash C. Basak |
Publisher | Springer Nature |
Pages | 173 |
Release | |
Genre | |
ISBN | 3031678419 |
A Brief Guide to Algebraic Number Theory
Title | A Brief Guide to Algebraic Number Theory PDF eBook |
Author | H. P. F. Swinnerton-Dyer |
Publisher | Cambridge University Press |
Pages | 164 |
Release | 2001-02-22 |
Genre | Mathematics |
ISBN | 9780521004237 |
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Variational Analysis
Title | Variational Analysis PDF eBook |
Author | R. Tyrrell Rockafellar |
Publisher | Springer Science & Business Media |
Pages | 747 |
Release | 2009-06-26 |
Genre | Mathematics |
ISBN | 3642024319 |
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Acing the New SAT Math
Title | Acing the New SAT Math PDF eBook |
Author | Thomas Hyun |
Publisher | |
Pages | |
Release | 2016-05-01 |
Genre | |
ISBN | 9780975475355 |
SAT MATH TEST BOOK
Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Title | Schubert Calculus and Its Applications in Combinatorics and Representation Theory PDF eBook |
Author | Jianxun Hu |
Publisher | Springer Nature |
Pages | 367 |
Release | 2020-10-24 |
Genre | Mathematics |
ISBN | 9811574510 |
This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
Why Beauty Is Truth
Title | Why Beauty Is Truth PDF eBook |
Author | Ian Stewart |
Publisher | |
Pages | 306 |
Release | 2008-04-29 |
Genre | Mathematics |
ISBN | 0465082378 |
Physics.