Cross Diffusion Systems

Cross Diffusion Systems
Title Cross Diffusion Systems PDF eBook
Author Dung Le
Publisher Walter de Gruyter GmbH & Co KG
Pages 236
Release 2022-10-24
Genre Mathematics
ISBN 3110795132

Download Cross Diffusion Systems Book in PDF, Epub and Kindle

The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.

Nonlinear Reaction-Diffusion Systems

Nonlinear Reaction-Diffusion Systems
Title Nonlinear Reaction-Diffusion Systems PDF eBook
Author Roman Cherniha
Publisher Springer
Pages 173
Release 2017-09-18
Genre Mathematics
ISBN 3319654675

Download Nonlinear Reaction-Diffusion Systems Book in PDF, Epub and Kindle

This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master’s level mathematical biology courses.

Progress in Industrial Mathematics at ECMI 2016

Progress in Industrial Mathematics at ECMI 2016
Title Progress in Industrial Mathematics at ECMI 2016 PDF eBook
Author Peregrina Quintela
Publisher Springer
Pages 749
Release 2018-03-26
Genre Mathematics
ISBN 3319630822

Download Progress in Industrial Mathematics at ECMI 2016 Book in PDF, Epub and Kindle

This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world – inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading to innovation in both fields and providing unique opportunities to discuss the latest ideas, problems and methodologies, and contributing to the advancement of science and technology. They also encourage industrial sectors to propose challenging problems where mathematicians can provide insights and fresh perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.

Entropy Methods for Diffusive Partial Differential Equations

Entropy Methods for Diffusive Partial Differential Equations
Title Entropy Methods for Diffusive Partial Differential Equations PDF eBook
Author Ansgar Jüngel
Publisher Springer
Pages 146
Release 2016-06-17
Genre Mathematics
ISBN 3319342193

Download Entropy Methods for Diffusive Partial Differential Equations Book in PDF, Epub and Kindle

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.

Function Spaces, Differential Operators and Nonlinear Analysis

Function Spaces, Differential Operators and Nonlinear Analysis
Title Function Spaces, Differential Operators and Nonlinear Analysis PDF eBook
Author Dorothee Haroske
Publisher Springer Science & Business Media
Pages 494
Release 2003-02-24
Genre Mathematics
ISBN 9783764369354

Download Function Spaces, Differential Operators and Nonlinear Analysis Book in PDF, Epub and Kindle

This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: • Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.

Nonlocal Diffusion Problems

Nonlocal Diffusion Problems
Title Nonlocal Diffusion Problems PDF eBook
Author Fuensanta Andreu-Vaillo
Publisher American Mathematical Soc.
Pages 274
Release 2010
Genre Mathematics
ISBN 0821852302

Download Nonlocal Diffusion Problems Book in PDF, Epub and Kindle

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.

The Mathematics of Diffusion

The Mathematics of Diffusion
Title The Mathematics of Diffusion PDF eBook
Author John Crank
Publisher Oxford University Press
Pages 428
Release 1979
Genre Mathematics
ISBN 9780198534112

Download The Mathematics of Diffusion Book in PDF, Epub and Kindle

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.