Toughening Mechanisms in Composite Materials

Toughening Mechanisms in Composite Materials
Title Toughening Mechanisms in Composite Materials PDF eBook
Author Qing-Hua Qin
Publisher Elsevier
Pages 417
Release 2015-05-26
Genre Technology & Engineering
ISBN 1782422919

Download Toughening Mechanisms in Composite Materials Book in PDF, Epub and Kindle

Toughening Mechanisms in Composite Materials aims to provide a comprehensive and technically detailed coverage of composites and their toughening mechanisms. Unique in its direct and comprehensive approach, the book presents fundamental knowledge on composites' toughening mechanisms as well as a comprehensive treatment of numerical methods. This volume summarizes the current state-of-the-art and presents the most recent research outcomes in the field. It details the development of each of the techniques, beginning with basic principles, and new concepts are illustrated with examples wherever possible. - Covers particle-reinforced composites, fibre-reinforced composites and other toughening mechanisms - Analyses toughening mechanisms in a broad range of composite materials - Developments in nanotube toughened composites and toughened graphene ceramic composites are examined

Mechanical Properties of Ceramics

Mechanical Properties of Ceramics
Title Mechanical Properties of Ceramics PDF eBook
Author Joshua Pelleg
Publisher Springer Science & Business
Pages 782
Release 2014-04-22
Genre Science
ISBN 3319044923

Download Mechanical Properties of Ceramics Book in PDF, Epub and Kindle

This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated techniques to produce a large variety of ceramic material. The chapters of this volume are ordered to help students with their laboratory experiments and guide their observations in parallel with lectures based on the current text. Thus, the first chapter is devoted to mechanical testing. A chapter of ductile and superplastic ceramic is added to emphasize their role in modern ceramics (chapter 2). These are followed by the theoretical basis of the subject. Various aspects of the mechanical properties are discussed in the following chapters, among them, strengthening mechanisms, time dependent and cyclic deformation of ceramics. Many practical illustrations are provided representing various observations encountered in actual ceramic-structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included in this textbook to provide a broad basis for further studying the subject. The work also contains a unique chapter on a topic not discussed in other textbooks on ceramics concerning nanosized ceramics. This work will also be useful as a reference for materials scientists, not only to those who specialize in ceramics.

Fiber-Reinforced Nanocomposites: Fundamentals and Applications

Fiber-Reinforced Nanocomposites: Fundamentals and Applications
Title Fiber-Reinforced Nanocomposites: Fundamentals and Applications PDF eBook
Author Baoguo Han
Publisher Elsevier
Pages 605
Release 2020-03-13
Genre Technology & Engineering
ISBN 0128199105

Download Fiber-Reinforced Nanocomposites: Fundamentals and Applications Book in PDF, Epub and Kindle

Fiber-reinforced Nanocomposites: Fundamentals and Applications explores the fundamental concepts and emerging applications of fiber-reinforced nanocomposites in the automobile, aerospace, transportation, construction, sporting goods, optics, electronics, acoustics and environmental sector. In addition, the book provides a detailed overview of the properties of fiber-reinforced nanocomposites, including discussion on embedding these high-strength fibers in matrices. Due to the mismatch in structure, density, strain and thermal expansion coefficients between matrix and fibers, their thermo-mechanical properties strongly depend not only on the preparative methods, but also on the interaction between reinforcing phase and matrix phase. This book offers a concise overview of these advances and how they are leading to the creation of stronger, more durable classes of nanocomposite materials. - Explores the interaction between fiber, nanoreinforcers and matrices at the nanoscale - Shows how the properties of fiber-enforced nanocomposites are ideal for use for a variety of consumer products - Outlines the major challenges to creating fiber-reinforced nanocomposites effectively

Toughening Mechanisms in Quasi-Brittle Materials

Toughening Mechanisms in Quasi-Brittle Materials
Title Toughening Mechanisms in Quasi-Brittle Materials PDF eBook
Author S.P. Shah
Publisher Springer Science & Business Media
Pages 590
Release 2012-12-06
Genre Science
ISBN 9401133883

Download Toughening Mechanisms in Quasi-Brittle Materials Book in PDF, Epub and Kindle

A variety of ceramic materials has been recently shown to exhibit nonlinear stress strain behavior. These materials include transformation-toughened zirconia which undergoes a stress-induced crystallographic transformation in the vicinity of a propagating crack, microcracking ceramics, and ceramic-fiber reinforced ceramic matrices. Since many of these materials are under consideration for structural applications, understanding fracture in these quasi-brittle materials is essential. Portland cement concrete is a relatively brittle material. As a result mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete and fiber reinforced concrete is critically influenced by crack propagation. Crack propagation in concrete is characterized by a fracture process zone, microcracking, and aggregate bridging. Such phenomena give concrete toughening mechanisms, and as a result, the macroscopic response of concrete can be characterized as that of a quasi-brittle material. To design super high performance cement composites, it is essential to understand the complex fracture processes in concrete. A wide range of concern in design involves fracture in rock masses and rock structures. For example, prediction of the extension or initiation of fracture is important in: 1) the design of caverns (such as underground nuclear waste isolation) subjected to earthquake shaking or explosions, 2) the production of geothermal and petroleum energy, and 3) predicting and monitoring earthquakes. Depending upon the grain size and mineralogical composition, rock may also exhibit characteristics of quasi-brittle materials.

Adhesives

Adhesives
Title Adhesives PDF eBook
Author Anna Rudawska
Publisher BoD – Books on Demand
Pages 400
Release 2016-11-23
Genre Science
ISBN 9535127837

Download Adhesives Book in PDF, Epub and Kindle

This book presents some information regarding adhesives which have applications in industry, medicine and dentistry. The book is divided into two parts: "Adhesives Applications in Medicine and Dentistry" and "Properties of Adhesive." The aim of such a presentation is to present the usage in very different aspects of application of the adhesives and present specific properties of adhesives. Adhesives' advantageous properties and relatively uncomplicated processing methods contribute to their increasing application and their growing popularity in the industry, medicine and other branches. Some adhesives represent properties superior to those of most adhesive materials, due to their excellent adhesion and chemical resistance. A wide variety of adhesives' considerable flexibility in modification of properties of adhesives allows adjusting the composition to particular applications.

Classic and Advanced Ceramics

Classic and Advanced Ceramics
Title Classic and Advanced Ceramics PDF eBook
Author Robert B. Heimann
Publisher John Wiley & Sons
Pages 573
Release 2010-04-16
Genre Technology & Engineering
ISBN 352763018X

Download Classic and Advanced Ceramics Book in PDF, Epub and Kindle

Based on the author's lectures to graduate students of geosciences, physics, chemistry and materials science, this didactic handbook covers basic aspects of ceramics such as composition and structure as well as such advanced topics as achieving specific functionalities by choosing the right materials. The focus lies on the thermal transformation processes of natural raw materials to arrive at traditional structural ceramics and on the general physical principles of advanced functional ceramics. The book thus provides practice-oriented information to readers in research, development and engineering on how to understand, make and improve ceramics and derived products, while also serving as a rapid reference for the practitioner. The choice of topics and style of presentation make it equally useful for chemists, materials scientists, engineers and mineralogists.

Ceramic Nanocomposites

Ceramic Nanocomposites
Title Ceramic Nanocomposites PDF eBook
Author Rajat Banerjee
Publisher Elsevier
Pages 617
Release 2013-07-31
Genre Technology & Engineering
ISBN 0857093495

Download Ceramic Nanocomposites Book in PDF, Epub and Kindle

Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications.Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallic–ceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field.With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials. - Reviews the structure and properties of ceramic nanocomposites as well as their manufacturing and applications - Examines properties of different ceramic nanocomposites, as well as failure mechanisms - Details the processing of nanocomposites and explores the applications of ceramic nanocomposites in areas such as energy production and the biomedical field