Count Time Series
Title | Count Time Series PDF eBook |
Author | Konstantinos Fokianos |
Publisher | CRC Press |
Pages | 220 |
Release | 2020-06-30 |
Genre | |
ISBN | 9781482248050 |
An Introduction to Discrete-Valued Time Series
Title | An Introduction to Discrete-Valued Time Series PDF eBook |
Author | Christian H. Weiss |
Publisher | John Wiley & Sons |
Pages | 300 |
Release | 2018-02-05 |
Genre | Mathematics |
ISBN | 1119096960 |
A much-needed introduction to the field of discrete-valued time series, with a focus on count-data time series Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. Classic approaches like ARMA models and the Box-Jenkins program are also featured with the basics of these approaches summarized in an Appendix. In addition, data examples, with all relevant R code, are available on a companion website. Provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series Covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties Addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples Covers classical approaches such as ARMA models, Box-Jenkins program and how to generate functions Includes dataset examples with all necessary R code provided on a companion website An Introduction to Discrete-Valued Time Series is a valuable working resource for researchers and practitioners in a broad range of fields, including statistics, data science, machine learning, and engineering. It will also be of interest to postgraduate students in statistics, mathematics and economics.
Handbook of Discrete-Valued Time Series
Title | Handbook of Discrete-Valued Time Series PDF eBook |
Author | Richard A. Davis |
Publisher | CRC Press |
Pages | 484 |
Release | 2016-01-06 |
Genre | Mathematics |
ISBN | 1466577746 |
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca
Forecasting: principles and practice
Title | Forecasting: principles and practice PDF eBook |
Author | Rob J Hyndman |
Publisher | OTexts |
Pages | 380 |
Release | 2018-05-08 |
Genre | Business & Economics |
ISBN | 0987507117 |
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Regression Analysis of Count Data
Title | Regression Analysis of Count Data PDF eBook |
Author | Adrian Colin Cameron |
Publisher | Cambridge University Press |
Pages | 597 |
Release | 2013-05-27 |
Genre | Business & Economics |
ISBN | 1107014166 |
This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.
Time Series Modelling of Water Resources and Environmental Systems
Title | Time Series Modelling of Water Resources and Environmental Systems PDF eBook |
Author | K.W. Hipel |
Publisher | Elsevier |
Pages | 1053 |
Release | 1994-04-07 |
Genre | Technology & Engineering |
ISBN | 0080870368 |
This is a comprehensive presentation of the theory and practice of time series modelling of environmental systems. A variety of time series models are explained and illustrated, including ARMA (autoregressive-moving average), nonstationary, long memory, three families of seasonal, multiple input-single output, intervention and multivariate ARMA models. Other topics in environmetrics covered in this book include time series analysis in decision making, estimating missing observations, simulation, the Hurst phenomenon, forecasting experiments and causality. Professionals working in fields overlapping with environmetrics - such as water resources engineers, environmental scientists, hydrologists, geophysicists, geographers, earth scientists and planners - will find this book a valuable resource. Equally, environmetrics, systems scientists, economists, mechanical engineers, chemical engineers, and management scientists will find the time series methods presented in this book useful.
Practical Time Series Analysis
Title | Practical Time Series Analysis PDF eBook |
Author | Aileen Nielsen |
Publisher | O'Reilly Media |
Pages | 500 |
Release | 2019-09-20 |
Genre | Computers |
ISBN | 1492041629 |
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance