Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/air Flames

Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/air Flames
Title Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/air Flames PDF eBook
Author
Publisher
Pages
Release 2001
Genre
ISBN

Download Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/air Flames Book in PDF, Epub and Kindle

In the flamelet approach of turbulent premixed combustion, the flames are modeled as a wrinkled surface whose propagation speed, termed the[open-quotes]displacement speed, [close-quotes] is prescribed in terms of the local flow field and flame geometry. Theoretical studies suggest a linear relation between the flame speed and stretch for small values of stretch, S[sub L]/S[sub L][sup 0]= 1 - MaKa, where S[sub L][sup 0] is the laminar flame speed, Ka=[kappa][delta][sub F]/S[sub L][sup 0] is the nondimensional stretch or the Karlovitz number, and Ma= L/[delta][sub F] is the Markstein number. The nominal flame thickness, [delta][sub F], is determined as the ratio of the mass diffusivity of the unburnt mixture to the laminar flame speed. Thus, the turbulent flame model relies on an accurate estimate of the Markstein number in specific flame configurations. Experimental measurement of flame speed and stretch in turbulent flames, however, is extremely difficult. As a result, measurement of flame speeds under strained flow fields has been made in simpler geometries, in which the effect of flame curvature is often omitted. In this study we present results of direct numerical simulations of unsteady turbulent flames with detailed methane/air chemistry, thereby providing an alternative method of obtaining flame structure and propagation statistics. The objective is to determine the correlation between the displacement speed and stretch over a broad range of Karlovitz numbers. The observed response of the displacement speed is then interpreted in terms of local tangential strain rate and curvature effects. 13 refs., 3 figs.

Correlation of Flame Speed with Stretch in Turbulent Premixed Methane

Correlation of Flame Speed with Stretch in Turbulent Premixed Methane
Title Correlation of Flame Speed with Stretch in Turbulent Premixed Methane PDF eBook
Author
Publisher
Pages 28
Release 1998
Genre
ISBN

Download Correlation of Flame Speed with Stretch in Turbulent Premixed Methane Book in PDF, Epub and Kindle

Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C1-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, -1 (less-than or equal to) Ka (less-than or equal to) 1, which includes 90% of the sample, the correlation is approximately linear, and hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined and is consistent with values obtained from comparable steady counterflow computations. In addition to this conventional positive branch, a negative branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases, is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations.

Turbulent Premixed Flames

Turbulent Premixed Flames
Title Turbulent Premixed Flames PDF eBook
Author Nedunchezhian Swaminathan
Publisher Cambridge University Press
Pages 447
Release 2011-04-25
Genre Technology & Engineering
ISBN 1139498584

Download Turbulent Premixed Flames Book in PDF, Epub and Kindle

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Turbulent Combustion

Turbulent Combustion
Title Turbulent Combustion PDF eBook
Author Norbert Peters
Publisher Cambridge University Press
Pages 322
Release 2000-08-15
Genre Science
ISBN 1139428063

Download Turbulent Combustion Book in PDF, Epub and Kindle

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames

Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames
Title Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames PDF eBook
Author Kenneth Owen Smith
Publisher
Pages 488
Release 1978
Genre Flame
ISBN

Download Experimental Investigation of Flow Turbulence Effects on Premixed Methane-air Flames Book in PDF, Epub and Kindle

The Mathematics of Combustion

The Mathematics of Combustion
Title The Mathematics of Combustion PDF eBook
Author John D. Buckmaster
Publisher SIAM
Pages 266
Release 1985-01-01
Genre Mathematics
ISBN 9781611971064

Download The Mathematics of Combustion Book in PDF, Epub and Kindle

This book delves into the rapidly changing area of combustion, in which asymptotic methods and bifurcation theory have made a significant impact as have the constant-density, small-heat-release models and other important contributions.

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames
Title Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames PDF eBook
Author
Publisher
Pages 13
Release 2015
Genre
ISBN

Download Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames Book in PDF, Epub and Kindle

Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane-air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.