Convexity and Duality in Optimization

Convexity and Duality in Optimization
Title Convexity and Duality in Optimization PDF eBook
Author Jacob Ponstein
Publisher Springer Science & Business Media
Pages 151
Release 2012-12-06
Genre Business & Economics
ISBN 3642456103

Download Convexity and Duality in Optimization Book in PDF, Epub and Kindle

The analysis and optimization of convex functions have re ceived a great deal of attention during the last two decades. If we had to choose two key-words from these developments, we would retain the concept of ~ubdi66~e~ and the duality theo~y. As it usual in the development of mathematical theories, people had since tried to extend the known defi nitions and properties to new classes of functions, including the convex ones. For what concerns the generalization of the notion of subdifferential, tremendous achievements have been carried out in the past decade and any rna·· thematician who is faced with a nondifferentiable nonconvex function has now a panoply of generalized subdifferentials or derivatives at his disposal. A lot remains to be done in this area, especially concerning vecto~-valued functions ; however we think the golden age for these researches is behind us. Duality theory has also fascinated many mathematicians since the underlying mathematical framework has been laid down in the context of Convex Analysis. The various duality schemes which have emerged in the re cent years, despite of their mathematical elegance, have not always proved as powerful as expected.

Convex Duality and Financial Mathematics

Convex Duality and Financial Mathematics
Title Convex Duality and Financial Mathematics PDF eBook
Author Peter Carr
Publisher Springer
Pages 162
Release 2018-07-18
Genre Mathematics
ISBN 3319924923

Download Convex Duality and Financial Mathematics Book in PDF, Epub and Kindle

This book provides a concise introduction to convex duality in financial mathematics. Convex duality plays an essential role in dealing with financial problems and involves maximizing concave utility functions and minimizing convex risk measures. Recently, convex and generalized convex dualities have shown to be crucial in the process of the dynamic hedging of contingent claims. Common underlying principles and connections between different perspectives are developed; results are illustrated through graphs and explained heuristically. This book can be used as a reference and is aimed toward graduate students, researchers and practitioners in mathematics, finance, economics, and optimization. Topics include: Markowitz portfolio theory, growth portfolio theory, fundamental theorem of asset pricing emphasizing the duality between utility optimization and pricing by martingale measures, risk measures and its dual representation, hedging and super-hedging and its relationship with linear programming duality and the duality relationship in dynamic hedging of contingent claims

Convex Optimization Theory

Convex Optimization Theory
Title Convex Optimization Theory PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Pages 256
Release 2009-06-01
Genre Mathematics
ISBN 1886529310

Download Convex Optimization Theory Book in PDF, Epub and Kindle

An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Convex Optimization

Convex Optimization
Title Convex Optimization PDF eBook
Author Stephen P. Boyd
Publisher Cambridge University Press
Pages 744
Release 2004-03-08
Genre Business & Economics
ISBN 9780521833783

Download Convex Optimization Book in PDF, Epub and Kindle

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Analysis and Optimization

Convex Analysis and Optimization
Title Convex Analysis and Optimization PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Pages 560
Release 2003-03-01
Genre Mathematics
ISBN 1886529450

Download Convex Analysis and Optimization Book in PDF, Epub and Kindle

A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

Convex Optimization Algorithms

Convex Optimization Algorithms
Title Convex Optimization Algorithms PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Pages 576
Release 2015-02-01
Genre Mathematics
ISBN 1886529280

Download Convex Optimization Algorithms Book in PDF, Epub and Kindle

This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Convexity and Optimization in Finite Dimensions I

Convexity and Optimization in Finite Dimensions I
Title Convexity and Optimization in Finite Dimensions I PDF eBook
Author Josef Stoer
Publisher Springer Science & Business Media
Pages 306
Release 2012-12-06
Genre Mathematics
ISBN 3642462162

Download Convexity and Optimization in Finite Dimensions I Book in PDF, Epub and Kindle

Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures.