Convex Optimization Theory
Title | Convex Optimization Theory PDF eBook |
Author | Dimitri Bertsekas |
Publisher | Athena Scientific |
Pages | 256 |
Release | 2009-06-01 |
Genre | Mathematics |
ISBN | 1886529310 |
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Convex Analysis and Optimization
Title | Convex Analysis and Optimization PDF eBook |
Author | Dimitri Bertsekas |
Publisher | Athena Scientific |
Pages | 560 |
Release | 2003-03-01 |
Genre | Mathematics |
ISBN | 1886529450 |
A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html
Convex Optimization
Title | Convex Optimization PDF eBook |
Author | Stephen P. Boyd |
Publisher | Cambridge University Press |
Pages | 744 |
Release | 2004-03-08 |
Genre | Business & Economics |
ISBN | 9780521833783 |
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Convex Optimization Algorithms
Title | Convex Optimization Algorithms PDF eBook |
Author | Dimitri Bertsekas |
Publisher | Athena Scientific |
Pages | 576 |
Release | 2015-02-01 |
Genre | Mathematics |
ISBN | 1886529280 |
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.
Convex Analysis and Nonlinear Optimization
Title | Convex Analysis and Nonlinear Optimization PDF eBook |
Author | Jonathan Borwein |
Publisher | Springer Science & Business Media |
Pages | 316 |
Release | 2010-05-05 |
Genre | Mathematics |
ISBN | 0387312560 |
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Lectures on Convex Optimization
Title | Lectures on Convex Optimization PDF eBook |
Author | Yurii Nesterov |
Publisher | Springer |
Pages | 603 |
Release | 2018-11-19 |
Genre | Mathematics |
ISBN | 3319915789 |
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.
Convex Optimization
Title | Convex Optimization PDF eBook |
Author | Arto Ruud |
Publisher | Nova Science Publishers |
Pages | 0 |
Release | 2019 |
Genre | Convex functions |
ISBN | 9781536146967 |
Over the past two decades, it has been recognized that advanced image processing techniques provide valuable information to physicians for the diagnosis, image guided therapy and surgery, and monitoring of human diseases. Convex Optimization: Theory, Methods and Applications introduces novel and sophisticated mathematical problems which encourage the development of advanced optimization and computing methods, especially convex optimization.The authors go on to study Steffensen-King-type methods of convergence to approximate a locally unique solution of a nonlinear equation and also in problems of convex optimization. Real-world applications are also provided.The following study is focused on the design and testing of a Matlab code of the Frank-Wolfe algorithm. The Nesterov step is proposed in order to accelerate the algorithm, and the results of some numerical experiments of constraint optimization are also provided.Lagrangian methods for numerical solutions to constrained convex programs are also explored. For enhanced algorithms, the traditional Lagrange multiplier update is modified to take a soft reflection across the zero boundary. This, coupled with a modified drift expression, is shown to yield improved performance.Next, Newton's mesh independence principle was used to solve a certain class of optimal design problems from earlier studies. Motivated by optimization considerations, the authors show that under the same computational cost, a finer mesh independence principle can be given than before.This compilation closes with a presentation on a local convergence analysis for eighth�order variants of Hansen�Patrick�s family for approximating a locally unique solution of a nonlinear equation. The radius of convergence and computable error bounds on the distances involved are also provided.