Convex Integration Theory

Convex Integration Theory
Title Convex Integration Theory PDF eBook
Author David Spring
Publisher Birkhäuser
Pages 217
Release 2012-12-06
Genre Mathematics
ISBN 3034889402

Download Convex Integration Theory Book in PDF, Epub and Kindle

§1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par tial differential equations. As a case of interest, the Nash-Kuiper Cl-isometrie immersion theorem ean be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaees can be proved by means of the other two methods.

Convex Integration Theory

Convex Integration Theory
Title Convex Integration Theory PDF eBook
Author David Spring
Publisher Birkhäuser
Pages 213
Release 2013-01-02
Genre Mathematics
ISBN 9783034800617

Download Convex Integration Theory Book in PDF, Epub and Kindle

§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.

Geometric Integration Theory

Geometric Integration Theory
Title Geometric Integration Theory PDF eBook
Author Steven G. Krantz
Publisher Springer Science & Business Media
Pages 344
Release 2008-12-15
Genre Mathematics
ISBN 0817646795

Download Geometric Integration Theory Book in PDF, Epub and Kindle

This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

Issues in General Science and Scientific Theory and Method: 2013 Edition

Issues in General Science and Scientific Theory and Method: 2013 Edition
Title Issues in General Science and Scientific Theory and Method: 2013 Edition PDF eBook
Author
Publisher ScholarlyEditions
Pages 1203
Release 2013-05-01
Genre Science
ISBN 149010691X

Download Issues in General Science and Scientific Theory and Method: 2013 Edition Book in PDF, Epub and Kindle

Issues in General Science and Scientific Theory and Method: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Mixed Methods Research. The editors have built Issues in General Science and Scientific Theory and Method: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mixed Methods Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Science and Scientific Theory and Method: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Lectures on Convex Geometry

Lectures on Convex Geometry
Title Lectures on Convex Geometry PDF eBook
Author Daniel Hug
Publisher Springer Nature
Pages 287
Release 2020-08-27
Genre Mathematics
ISBN 3030501809

Download Lectures on Convex Geometry Book in PDF, Epub and Kindle

This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.

From Topology to Computation: Proceedings of the Smalefest

From Topology to Computation: Proceedings of the Smalefest
Title From Topology to Computation: Proceedings of the Smalefest PDF eBook
Author Morris W. Hirsch
Publisher Springer Science & Business Media
Pages 620
Release 2012-12-06
Genre Mathematics
ISBN 1461227402

Download From Topology to Computation: Proceedings of the Smalefest Book in PDF, Epub and Kindle

An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: • Differential Topology • Mathematical Economics • Dynamical Systems • Theory of Computation • Nonlinear Functional Analysis • Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale has made lasting con tributions. The theme "Unity and Diversity" is enlarged upon in the section entitled "Research Themes and Conference Schedule." The organizers hoped that illuminating connections between seemingly separate mathematical sub jects would emerge from the conference. Since such connections are not easily made in formal mathematical papers, the conference included discussions after each of the historical reviews of Smale's work in different fields. In addition, there was a final panel discussion at the end of the conference.

A Course in Convexity

A Course in Convexity
Title A Course in Convexity PDF eBook
Author Alexander Barvinok
Publisher American Mathematical Soc.
Pages 378
Release 2002-11-19
Genre Mathematics
ISBN 0821829688

Download A Course in Convexity Book in PDF, Epub and Kindle

Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.