Convex and Set-Valued Analysis

Convex and Set-Valued Analysis
Title Convex and Set-Valued Analysis PDF eBook
Author Aram V. Arutyunov
Publisher Walter de Gruyter GmbH & Co KG
Pages 244
Release 2016-12-05
Genre Mathematics
ISBN 3110460416

Download Convex and Set-Valued Analysis Book in PDF, Epub and Kindle

This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Set-Valued Analysis

Set-Valued Analysis
Title Set-Valued Analysis PDF eBook
Author Jean-Pierre Aubin
Publisher Springer Science & Business Media
Pages 474
Release 2009-03-02
Genre Science
ISBN 0817648488

Download Set-Valued Analysis Book in PDF, Epub and Kindle

"An elegantly written, introductory overview of the field, with a near perfect choice of what to include and what not, enlivened in places by historical tidbits and made eminently readable throughout by crisp language. It has succeeded in doing the near-impossible—it has made a subject which is generally inhospitable to nonspecialists because of its ‘family jargon’ appear nonintimidating even to a beginning graduate student." —The Journal of the Indian Institute of Science "The book under review gives a comprehensive treatment of basically everything in mathematics that can be named multivalued/set-valued analysis. ...The book is highly recommended for mathematicians and graduate students who will find here a very comprehensive treatment of set-valued analysis." —Mathematical Reviews "This book provides a thorough introduction to multivalued or set-valued analysis... The style is lively and vigorous, the relevant historical comments and suggestive overviews increase the interest for this work...Graduate students and mathematicians of every persuasion will welcome this unparalleled guide to set-valued analysis." —Zentralblatt Math

Convex and Set-Valued Analysis

Convex and Set-Valued Analysis
Title Convex and Set-Valued Analysis PDF eBook
Author Aram V. Arutyunov
Publisher Walter de Gruyter GmbH & Co KG
Pages 209
Release 2016-12-05
Genre Mathematics
ISBN 3110460300

Download Convex and Set-Valued Analysis Book in PDF, Epub and Kindle

This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Convex Functional Analysis

Convex Functional Analysis
Title Convex Functional Analysis PDF eBook
Author Andrew J. Kurdila
Publisher Springer Science & Business Media
Pages 238
Release 2006-03-30
Genre Science
ISBN 3764373571

Download Convex Functional Analysis Book in PDF, Epub and Kindle

This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.

Topologies on Closed and Closed Convex Sets

Topologies on Closed and Closed Convex Sets
Title Topologies on Closed and Closed Convex Sets PDF eBook
Author Gerald Beer
Publisher Springer Science & Business Media
Pages 360
Release 1993-10-31
Genre Mathematics
ISBN 9780792325314

Download Topologies on Closed and Closed Convex Sets Book in PDF, Epub and Kindle

This monograph provides an introduction to the theory of topologies defined on the closed subsets of a metric space, and on the closed convex subsets of a normed linear space as well. A unifying theme is the relationship between topology and set convergence on the one hand, and set functionals on the other. The text includes for the first time anywhere an exposition of three topologies that over the past ten years have become fundamental tools in optimization, one-sided analysis, convex analysis, and the theory of multifunctions: the Wijsman topology, the Attouch--Wets topology, and the slice topology. Particular attention is given to topologies on lower semicontinuous functions, especially lower semicontinuous convex functions, as associated with their epigraphs. The interplay between convex duality and topology is carefully considered and a chapter on set-valued functions is included. The book contains over 350 exercises and is suitable as a graduate text. This book is of interest to those working in general topology, set-valued analysis, geometric functional analysis, optimization, convex analysis and mathematical economics.

Discrete Convex Analysis

Discrete Convex Analysis
Title Discrete Convex Analysis PDF eBook
Author Kazuo Murota
Publisher SIAM
Pages 411
Release 2003-01-01
Genre Mathematics
ISBN 9780898718508

Download Discrete Convex Analysis Book in PDF, Epub and Kindle

Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

An Easy Path to Convex Analysis and Applications

An Easy Path to Convex Analysis and Applications
Title An Easy Path to Convex Analysis and Applications PDF eBook
Author Boris S. Mordukhovich
Publisher Morgan & Claypool Publishers
Pages 219
Release 2013-12-01
Genre Mathematics
ISBN 1627052380

Download An Easy Path to Convex Analysis and Applications Book in PDF, Epub and Kindle

Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f