Convex Analysis and Minimization Algorithms I
Title | Convex Analysis and Minimization Algorithms I PDF eBook |
Author | Jean-Baptiste Hiriart-Urruty |
Publisher | Springer Science & Business Media |
Pages | 432 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662027968 |
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
Convex Analysis and Minimization Algorithms I
Title | Convex Analysis and Minimization Algorithms I PDF eBook |
Author | Jean-Baptiste Hiriart-Urruty |
Publisher | Springer Science & Business Media |
Pages | 442 |
Release | 1996-10-30 |
Genre | Mathematics |
ISBN | 3540568506 |
Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books.
Convex Analysis and Minimization Algorithms II
Title | Convex Analysis and Minimization Algorithms II PDF eBook |
Author | Jean-Baptiste Hiriart-Urruty |
Publisher | Springer Science & Business Media |
Pages | 362 |
Release | 2013-03-14 |
Genre | Business & Economics |
ISBN | 366206409X |
From the reviews: "The account is quite detailed and is written in a manner that will appeal to analysts and numerical practitioners alike...they contain everything from rigorous proofs to tables of numerical calculations.... one of the strong features of these books...that they are designed not for the expert, but for those who whish to learn the subject matter starting from little or no background...there are numerous examples, and counter-examples, to back up the theory...To my knowledge, no other authors have given such a clear geometric account of convex analysis." "This innovative text is well written, copiously illustrated, and accessible to a wide audience"
Fundamentals of Convex Analysis
Title | Fundamentals of Convex Analysis PDF eBook |
Author | Jean-Baptiste Hiriart-Urruty |
Publisher | Springer Science & Business Media |
Pages | 268 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642564682 |
This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. 305 and 306). It presents an introduction to the basic concepts in convex analysis and a study of convex minimization problems (with an emphasis on numerical algorithms). The "backbone" of bot volumes was extracted, some material deleted which was deemed too advanced for an introduction, or too closely attached to numerical algorithms. Some exercises were included and finally the index has been considerably enriched, making it an excellent choice for the purpose of learning and teaching.
Algorithms for Convex Optimization
Title | Algorithms for Convex Optimization PDF eBook |
Author | Nisheeth K. Vishnoi |
Publisher | Cambridge University Press |
Pages | 314 |
Release | 2021-10-07 |
Genre | Computers |
ISBN | 1108633994 |
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Title | Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF eBook |
Author | Heinz H. Bauschke |
Publisher | Springer |
Pages | 624 |
Release | 2017-02-28 |
Genre | Mathematics |
ISBN | 3319483110 |
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Lectures on Convex Optimization
Title | Lectures on Convex Optimization PDF eBook |
Author | Yurii Nesterov |
Publisher | Springer |
Pages | 603 |
Release | 2018-11-19 |
Genre | Mathematics |
ISBN | 3319915789 |
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.